
A Brief Introduction to Computational Number Theory

Christian Engman

Georgia Tech Big O Theory Club

4/21/2023

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 1 / 14

Introduction

Number theory is typically defined as the study of the integers.

At the core of almost all problems in number theory is the study of
prime numbers.

The fundamental theorem: every natural number has a unique prime
factorization

Core computational questions:
▶ Can we test if a number is prime?
▶ Can we factor a number into primes?

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 2 / 14

The Trivial Approach

For both factoring and prime-testing a number n, there is an obvious
algorithm: for every k < n, determine if k |n
This checks n − 1 numbers, but we can improve this down to

√
n

since factors come in pairs.

An O(
√
n) algorithm seems pretty good, right?

Note on algorithmic complexity

In CS, we like to talk about complexity in terms of the number of bits in
the input (b). Addition is Θ(b), and (naive) multiplication is O(b2). Trial
division, however, is O(2b/2), which is quite slow.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 3 / 14

The Fermat Test

Let’s take a look at prime testing. Our first algorithm uses the following
theorem:

Fermat’s Little Theorem

If p is a prime number and a ∈ N s.t. p ∤ a, then:

ap−1 ≡ 1 mod p

This tells us that, if an−1 ̸= 1 mod n, n must be composite. The
Fermat test, then, is simple: pick some number of ai randomly, and if
an−1
i ̸= 1 mod n, we return that n is composite, otherwise, return
that it is prime.

If n is composite and not a Carmichael Number, then more than half
of all a ∤ n will give an−1 ̸= 1 mod 1, so, if we test enough a’s, we
have a high probability of being right.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 4 / 14

A fatal flaw: Carmichael Numbers

Carmichael Number

A Carmichael Number is a composite number n s.t.

bn ≡ b mod n, ∀b ∈ N

Carmichael Numbers are relatively rare (the first one is 561, so they
are much less common than primes).

However, one can prove that there are infinitely many of them, which
means that, no matter how large the number you are trying to test,
there is always a chance that it is a Carmichael number.

Because of the fundamental property of Carmichael numbers,
Fermat’s test will always return prime on one, no matter how many
a’s we test.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 5 / 14

An Improvement: The Miller-Rabin Test

FLT Corollary

Suppose n is an odd prime and n − 1 = 2st, where t is odd. If a is not
divisible by n then one of the following is true:

at ≡ 1 mod n

∃i ∈ 0, . . . , s − 1, s.t. a2
i t ≡ −1 mod n

If n is composite, there exists an a s.t. neither is true.

Algorithm: pick several ai randomly, and, if one of the above is true
for every ai , return prime, otherwise, return composite.

test is still probabilistic, but there are no numbers where we will
always fail like in the Fermat Test.

Miller-Rabin is often used in practice, as it requires only Õ(kb2) time,
where k is the number of ai ’s checked.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 6 / 14

Other Primality Tests

Probabilistic Tests
▶ Solovay–Strassen: Õ(kb2)
▶ Frobenius primality test
▶ Baillie–PSW primality test

Deterministic Tests (under assumptions)
▶ Miller’s Test (deterministic version of Miller-Rabin): Õ(b4)
▶ Elliptic Curve Primality Test: Õ(b6)

Provably Deterministic tests
▶ Agrawal, Kayal and Saxena: Õ(b6)

AKS actually tells us that primality testing is in P, which is good
news!

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 7 / 14

The Integer Factorization Problem

Integer Factorization, taking a number and finding it’s prime factors,
is arguably the fundamental algorithmic problem in number theory.

If we could factor numbers ”fast”, we would be able to break the RSA
and ECC public-key cryptosystems.

Decision variant is known to be NP and Co-NP, (since multiplication
is polynomial time). However, A classical polynomial algorithm, a
proof/disproof of NP-completeness, and a proof of classical hardness
have evaded mathematicians and computer scientists for decades.

We saw that trial division is O(n1/2) time. Though it is not known if
we can get to polynomial in b = log n, however, we can do much
better than naive.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 8 / 14

Pollard’s ρ Algorithm: A Monte-Carlo approach

Suppose g(x) is a nonlinear function on Fp. It had been widely
observed that sequences of the form x , g(x), g(g(x)), . . . behave
chaotically, and have often been characterized as pseudorandom
(though we do not have rigorous results characterizing this
randomness).

Note also that, since Fp is finite, the sequence Fp is guaranteed to
repeat itself after some point, and, after this point, will become
cyclic. This gives us the ρ shape that is often used to describe these
types of sequences.

If we pick a starting point x0 ∈ N, then, after a maximum of p
iterations of the sequence xi = g(xi−1), we are guaranteed to have
some xi ≡ xj mod p, where i ̸= j .

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 9 / 14

Pollard’s ρ Algorithm: A Monte-Carlo approach

The Algorithm

Pick a g(x) (usually g(x) = x2 + 1) and x0 (usually 2)

Let x ← x0, y ← x0, and d ← 1

while d = 1, Let x ← g(x) mod n, y ← g(g(y)) mod n,
d ← gcd(|x − y |, n)
If d = n, try again with a new x0. d ̸= n, we have found a nontrivial
factor of n

If we assume that x0, g(x0), g(g(x0)), . . . , is roughly uniformly
random in Fp, We expect a repeated element of the sequence after
about

√
p iterations. We are most likely to find the smallest factor of

n first.

If p is the smallest nontrivial factor of n, we expect to terminate in
about

√
p iterations. Average time O(n1/4) algorithm, which is a

quadratic speedup over trial division.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 10 / 14

Fast Algorithms For Special-Case Factorization

Similar to the Pollard ρ algorithm, there are many other algorithms that,
though are generally exponential time, can give us results very quickly for
special numbers:

Pollard ρ with Brent-cycle finding (constant speedup over original)

Fermat factorization (For ’close’ factors)

Pollard’s p − 1 algorithm (O(ln n)2 in special cases)

William’s p + 1 algorithm (Variant of p − 1)

Lenstra’s Elliptic Curve Method: Lp
[
1
2 ,
√
2
]
(good for large numbers

w/ small factors)

Special Number Field Sieve (Generally observed to be fast for
numbers of the from r e ± s, where e and s are small)

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 11 / 14

General-Purpose Factorization algorithms

Special-case algorithms perform well in many cases, but for general
numbers of a large size, especially RSA numbers of the form n = p · q with
p and q sufficiently far apart, they provide us not advantages and are far
too slow. State-of-the art subexponential algorithms are commonly used in
this case:

Dixon’s Algorithm: Ln(1/2, 2
√
2)

Quadratic Sieve (an improvement on Dixon): Ln(1/2, 1 + o(1))

Rational Sieve (special case of GNFS)

General Number Field Sieve (best known worst case):
Ln(1/3, (64/9)

1/3) under GRH

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 12 / 14

The Final Boss: Shor’s Algorithm

No known polytime classical algorithms are known, however, due to
Peter Shor, we know of a polynomial time algorithm for Quantum
computers.

Due to fast operations on qubits, particularly the Quantum Fourier
Transform, Shor’s algorithm can run in time O(log2 n log log n), which
is only a log factor off of naive multiplication.

Though theoretically impressive, however, Quantum hardware is
plagued by reliability issues, and, as of now, the largest number that
has been factored with Shor’s algorithm is 21.

Even though quantum computing development has been relatively
slow, many in cryptography are still concerned, and have looked to
build public-key cryptosystems on NP-hard problems instead.

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 13 / 14

Some Other Problems

We took a look at two of the most common computational problems in
number theory. Here are a couple more interesting ones:

Solving Discrete Logarithms: given a, b, n ∈ N, find e such that
ae ≡ b mod n

Solving Diophantine Equations: Given an equation in multiple integer
variables, when and how quickly can we find solutions? (These
problems are studied commonly in algebraic number theory)

Solving general congruences: Can we solve congruences of the form
f (x) ≡ a mod n, when f is linear, quadratic, polynomial, etc?

Christian Engman (Georgia Tech Big O Theory Club)A Brief Introduction to Computational Number Theory 4/21/2023 14 / 14

