The Group Isomorphism Problem

and some other stuff...

by Daniel Hathcock
What is a Group?

Definition 2.1.1. Group - Let G be a nonempty set with a binary, well-defined operation \cdot. G is a group if (and only if) G has

1. **Closure** - $\forall a, b \in G, a \cdot b \in G$
2. **Associativity** - $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
3. **Existence of Identity** - $\exists e \in G$ such that $\forall a \in G, e \cdot a = a \cdot e = a$
4. **Existence of Inverse** - $\forall a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1} = e = a^{-1} \cdot a$

- If the operation is also commutative, we call the group “Abelian”.

Examples of Groups

- Integers under addition? Yes!
- Integers under multiplication? No! Missing inverses.
- Natural numbers under addition \{0, 1, 2, \ldots\}? No! Missing inverses.
- Examples of finite groups?...
- Set \{0, 1, 2, \ldots, n - 1\} under addition modulo n?
- Set \{1, 2, \ldots, n - 1\} under multiplication modulo n? Sometimes!
More Interesting Groups

- All of the previous examples have been abelian, since integer addition and multiplication commutes.
- What about the set of permutations (bijective functions) on a set of size 3?
 - \(R = \{1, 2, 3\} \)
 - \(S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\} \)
 - Call this \(\{e, a, b, c, d, f\} \) (in the same order) for simplicity.
 - What operation might we use to make this a group?
S₃ (The Symmetric Group of Degree 3).

- Define the operation as composition of permutations (i.e. do one permutation, then do the other).
- This forms a nonabelian group!
 - e (the trivial permutation) is the identity element.
 - We could test to see that a * b = d, b * a = f, and c * c = e.
- Let’s make a multiplication table!

- We can do this for any set (say of size n). This creates the symmetric group of degree n.
 - We know from permutations that the number of elements in this group is n! (factorial).
When are Two Groups the Same?

- \{0, 1\} under addition modulo 2 vs. \{-1, 1\} under multiplication?
- \{0, 1, 2\} under addition modulo 3 vs. Rotations of a triangle?
- \text{S}_3 vs. \{0, 1, 2, 3, 4, 5\} under addition modulo 6?

- How many groups are there of order (size) 6?? How about of order 2?
- Are they the same when they have the same multiplication table?...
Isomorphisms

- Two groups are “the same” (isomorphic) when there is an isomorphism between them.

Definition 2.1.2. Isomorphism - Let G and G' be groups, and suppose $\varphi : G \to G'$ is a function from G to G'. Then φ is an isomorphism if it satisfies both

1. $\varphi(a \ast b) = \varphi(a) \cdot \varphi(b)$ for any $a, b \in G$. We say φ preserves the group operation.

2. φ is a bijective mapping. i.e. it is both injective (1-1) and surjective (onto). For finite groups, this means that G and G' have the same size, and every element of G maps to a unique element of G'.
Group Isomorphism Problem(s)

There are two related problems:

1. Let G and G' be groups, given by their (finite) group presentations. We want to determine if these two groups are isomorphic.
 a. This problem is undecidable! There is no algorithm which can solve every instance of the problem.
 b. Group presentations are complicated. A finite presentation can define an infinite group.

2. Let G and G' be groups, given by their Cayley table (multiplication table). We want to determine if these two groups are isomorphic.
 a. Decidable but difficult. I will talk about this problem.
 b. Reduces to the **Graph Isomorphism Problem**!
The Naive Approach

- Can you think of a simple (inefficient) brute force algorithm to solve the problem?
- Try everything!
Improvements?

- Subgroups
- Lagrange’s Theorem
- Generating set of a group
Better Algorithms?

- Can we use some of the basic ideas in group theory to improve our algorithm?
- What if we are given a generating set A for group G with $|A| < |G|$?
- How big will A be? Can we compute some sufficiently small A quickly?
A Quasipolynomial Time Algorithm (Tarjan, 70s)

1. Compute a generating set A for G of size at most $\log_2(n)$ where $n = |G|$ (polynomial time)

2. Check all bijections between A and a subset of G' of size $|A|$.
 a. For each bijection, “expand” to test whether the bijection is also an isomorphism (polynomial time)
 b. Total number of bijections to check is $nC|A| * |A|! = n! / (n - |A|)! = O(n\log(n))$

3. So, total running time is $O(n^\log(n) + O(1))$
Recent Improvements

- Lipton gave a slightly stronger result: Group Iso in $O(\log^2(n))$ space (1976).
- Few improvements between 70s and 2010s.
- The classification of finite simple groups (2004) provides a polynomial time algorithm for groups which are known to be simple
 - They have a generator set with only 2 generators.
- In 2012, Babai gave a polynomial time algorithm for groups with no abelian normal subgroups
- In 2013 Rosenbaum gave a slightly improved general algorithm with running time $O(n^{0.5\log(n) + o(\log(n))})$
A Related Problem: Graph Isomorphism

- **Graph**: a set of vertices V, and edges between them E.
 - Directed graph - edges have an order. i.e. edge (x, y) is drawn as x \rightarrow y.
 - Undirected graph - edges have no order. i.e. (x, y) is drawn as x \rightarrow y.

- Two graphs (V, E) and (V', E') are isomorphic if there is a bijection (permutation) s from V to V' such that (x, y) \in E if and only if (s(x), s(y)) \in E'.
 - One graph’s vertices is just a relabeling of the other’s vertices.

- Groups have much more structure than graphs, so we might conjecture that the group isomorphism problem is “easier” than graph Isomorphism. How can we show this?
Reductions

- If problem A is “harder” than problem B, we might hope that an algorithm which efficiently solves A can be used as a subroutine to solve B with the same efficiency.

- In complexity theory, this is called a “reduction”. Intuitively, it is an algorithm that converts an easy problem to a hard problem efficiently (constant or polynomial time).
Groups and Graphs

- Can we come up with a way to reduce the group isomorphism problem to the graph isomorphism problem? (Hint: Yes we can...)

- It isn’t immediately obvious how though.

- Instead we will first look at how to reduce directed graph isomorphism to graph isomorphism.
 - This might give us an idea...
Isomorphism Problem Difficulty

- The reduction is interesting...but not very useful.

- The best currently accepted algorithm for graph iso has time complexity $2^{O(\sqrt{n \log(n)})}$
 - Babai’s $2^{O(\log(n)^3)}$ has not yet been peer reviewed, but is still worse than current group iso state of the art algorithms.

- Babai thinks that the group isomorphism problem is the only isomorphism problem of many which is expected to be solvable in polynomial time.
Sources

https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi79.pdf
https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi78.pdf

Wikipedia :)