The Group Isomorphism Problem and some other stuff...

by Daniel Hathcock

What is a Group?

Definition 2.1.1. Group - Let G be a *nonempty* set with a binary, well-defined operation *. G is a group if (and only if) G has

- 1. Closure $\forall a, b \in G, a * b \in G$
- 2. Associativity $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- 3. Existence of Identity $\exists e \in G$ such that $\forall a \in G, e * a = a * e = a$
- 4. Existence of Inverse $\forall a \in G, \exists a^{-1} \in G \text{ such that } a * a^{-1} = e = a^{-1} * a$

• If the operation is also commutative, we call the group "Abelian".

Examples of Groups

- Integers under addition? Yes!
- Integers under multiplication? No! Missing inverses.
- Natural numbers under addition {0, 1, 2, ... }? No! Missing inverses.
- Examples of finite groups?...
- Set {0, 1, 2, ..., n 1} under addition modulo n?
- Set {1, 2, ..., n 1} under multiplication modulo n?

More Interesting Groups

- All of the previous examples have been abelian, since integer addition and multiplication commutes.
- What about the set of permutations (bijections) on a set of size 3?

$$^{\circ} S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\}$$

- Call this {e, a, b, c, d, f} (in the same order) for simplicity.
- What operation might we use to make this a group?

S_3 (The Symmetric Group of Degree 3).

- Define the operation as composition of permutations (i.e. do one permutation, then do the other).
- This forms a nonabelian group!
 - e (the trivial permutation) is the identity element.
 - We could test to see that a * b = d, b * a = f, and c * c = e.
- Let's make a multiplication table!
- We can do this for any set (say of size n). This creates the symmetric group of degree n.
 - We know from permutations that the number of elements in this group is n! (factorial).

When are Two Groups the Same?

- {0, 1} under addition modulo 2 vs. {-1, 1} under multiplication?
- {0, 1, 2} under addition modulo 3 vs. Rotations of a triangle?
- S₃ vs. {0, 1, 2, 3, 4, 5} under addition modulo 6?

- How many groups are there of order (size) 6?? How about of order 2?
- Are they the same when they have the same multiplication table?...

Isomorphisms

• Two groups are "the same" (isomorphic) when there is an isomorphism between them.

Definition 2.1.2. Isomorphism - Let G and G' be groups, and suppose $\varphi : G \to G'$ is a function from G to G'. Then φ is an isomorphism if it satisfies both

- 1. $\varphi(a * b) = \varphi(a) \cdot \varphi(b)$ for any $a, b \in G$. We say φ preserves the group operation.
- 2. φ is a bijective mapping. i.e. it is both injective (1-1) and surjective (onto). For finite groups, this means that G and G' have the same size, and every element of G maps to a unique element of G'.

Group Isomorphism Problem(s)

There are two related problems:

- 1. Let G and G' be groups, given by their (finite) group presentations. We want to determine if these two groups are isomorphic.
 - a. This problem is <u>undecidable</u>! There is no algorithm which can solve every instance of the problem.
 - b. Group presentations are complicated. A finite presentation can define an infinite group.
- 2. Let G and G' be groups, given by their Cayley table (multiplication table). We want to determine if these two groups are isomorphic.
 - a. Decidable but difficult. I will talk about this problem.
 - b. Reduces to the Graph Isomorphism Problem!

The Naive Approach

- Can you think of a simple (inefficient) brute force algorithm to solve the problem?
- Try everything!

Improvements?

- Subgroups
- Lagrange's Theorem
- Generating set of a group

Better Algorithms?

- Can we use some of the basic ideas in group theory to improve our algorithm?
- What if we are given a generating set A for group G with |A| < |G|?

• How big will A be? Can we compute some sufficiently small A quickly?

A Quasipolynomial Time Algorithm (Tarjan, 70s)

- 1. Compute a generating set A for G of size at most $\log_2(n)$ where n = |G| (polynomial time)
- 2. Check all bijections between A and a subset of G' of size |A|.
 - a. For each bijection, "expand" to test whether the bijection is also an isomorphism (polynomial time)
 - b. Total number of bijections to check is $nC|A| * |A|! = n! / (n |A|)! = O(n^{log(n)})$
- 3. So, total running time is $O(n^{\log(n) + O(1)})$

Recent Improvements

- Lipton gave a slightly stronger result: Group Iso in O(log²(n)) space (1976).
- Few improvements between 70s and 2010s.
- The classification of finite simple groups (2004) provides a polynomial time algorithm for groups which are known to be simple
 - They have a generator set with only 2 generators.
- In 2012, Babai gave a polynomial time algorithm for groups with no abelian normal subgroups
- In 2013 Rosenbaum gave a slightly improved general algorithm with running time O(n^{0.5log(n) + o(log(n))})

A Related Problem: Graph Isomorphism

- Graph: a set of vertices V, and edges between them E.
 - Directed graph edges have an order. i.e. edge (x, y) is drawn as $x \rightarrow y$.
 - \circ Undirected graph edges have no order. i.e. (x, y) is drawn as x y.
- Two graphs (V, E) and (V', E') are isomorphic if there is a bijection (permutation) s from V to V' such that $(x, y) \in E$ if and only if $(s(x), s(y)) \in E'$
 - One graph's vertices is just a relabeling of the other's vertices.
- Groups have much more structure than graphs, so we might conjecture that the group isomorphism problem is "easier" than graph Isomorphism. How can we show this?

Reductions

- If problem A is "harder" than problem B, we might hope that an algorithm which efficiently solves A can be used as a subroutine to solve B with the same efficiency.
- In complexity theory, this is called a "reduction". Intuitively, it is an algorithm that converts an easy problem to a hard problem efficiently (constant or polynomial time).

Groups and Graphs

- Can we come up with a way to reduce the group isomorphism problem to the graph isomorphism problem? (Hint: Yes we can...)
- It isn't immediately obvious how though.
- Instead we will first look at how to reduce directed graph isomorphism to graph isomorphism.
 - This might give us an idea...

Isomorphism Problem Difficulty

- The reduction is interesting...but not very useful.
- The best currently accepted algorithm for graph iso has time complexity $2^{O(\sqrt{n} \log(n))}$
 - Babai's 2^{O(log(n)^3)} has not yet been peer reviewed, but is still worse than current group iso state of the art algorithms.
- Babai thinks that the group isomorphism problem is the only isomorphism problem of many which is expected to be solvable in polynomial time.

https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi79.pdf

https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi78.pdf

http://people.cs.uchicago.edu/~joshuag/grochow,qiao-gpiso.pdf

Wikipedia :)

