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A Markov chain is a sequence of random variables X0,X1, ...,Xt

over some state space X such that

P(Xt = xt |Xt−1 = xt−1, ...,X0 = x0) = P(Xt |Xt−1 = xt−1).

This just means that at any time t, the probability of moving to
some state x ′ ∈ X is only dependent on the current state.

Most MCs are time invariant meaning that we can succinctly
represent the MC as a transition matrix P where, at any time t,
P(x , x ′) = P(Xt+1 = x ′|Xt = x). Note that the rows add up to 1.
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Given an initial distribution across the states µ0, after one step of
the MC, we have a new distribution across the states

µ1 = µ0P.

With one more step, we get

µ2 = µ1P.

Thus,
µt = µ0P

t
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We call a MC irreducible if for all states a, b ∈ X , there exists a t
such that

Pt(a, b) > 0

Let T (x) be the set of times {t ≥ 1 : Pt(x , x) > 0}. The period
of a state x is the greatest common divisor of the set T (x).

Theorem

If a MC is irreducible, then the period of every state is the same.

To gain intuition of what a period is, consider a random walk on a
cycle of even length. There are two types of states, even and odd.
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Proof:

Say we have two states x and y . Since the MC is irreducible, we
know there exits r , l > 0 such that P r (x , y) > 0 and P l(y , x) > 0.
Say m = r + l . Then m ∈ T (x) and b ∈ T (y). If we have an
element a ∈ T (x) then a can be represented as b −m where
b ∈ T (y). Thus T (x) ∈ T (y)−m so the gcd of T (y) divides all
elements of T (x). Therefore, gcd T (y) ≤ gcd T (x). We can do a
parallel argument to get T (x) ≤ gcd T (y)
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A stationary distribution of a MC is some probability vector such
that

π = πP

Theorem

If a MC is irreducible and aperiodic, there exists a unique
stationary distribution with all entries greater than 0.
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Metropolis Hasting Algorithm - Motivation:
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Given that we are at state x ,

1 Pick a neighbor y with probability 1
∆ where ∆ is the

maximum degree of the graph G represented by the MC.

2 Move to y with probability min(1, π(y)
π(x) )

3 With all remaining probability, stay at x .

Theorem

The stationary distribution of this is π assuming the condition of
detailed balance.
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Three points of interest :

1 Is this even a valid transition matrix?

2 Is π the actual stationary distribution?

3 Is it a unique stationary distribution?
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The counting problem : Number of matchings given some graph G

A randomized approximation scheme for a counting problem
f : Σ→ N is a randomized algorithm that takes an input x , an
error tolerance ε > 0 and outputs a number N such that the
probability that N is within bounds set by this error is greater than
0.5.

An almost uniform sampler for a solution set (like the set of
matchings for a graph) is a randomized algorithm that takes an
input (like a graph) and a sampling tolerance δ > 0 outputs a
solution W which is a random variable of the algorithm such that
the distance between the distribution of W and a uniform
distribution on the solution set is at most δ3.
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Theorem

Let G be a graph with n vertices and m edges, where m > 1 to
avoid trivialities. If there is an almost uniform sampler for M(G ),
then there is a randomized approximation scheme for |M(G )|.
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Some points :
|M(G )| = (α1α2....αm)−1

where

α =
|M(Gi−1)|
|M(Gi )|

Note that
M(Gi−1) ⊂ M(Gi )

and that M(Gi )−M(Gi−1) can be mapped injectively into
M(Gi−1) by sending M to M − ei . Thus,

1

2
≤ α ≤ 1

Let Zi be an indicator function of when Mi ∈ M(Gi ) is in M(Gi−1).
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Markov chain with stationary distribution for an almost uniform
sampler: Say you are at state / matching M.

1 With probability 1
2 , set the next state to M.

2 Select e ∈ E (G ) and set M ′ = M ⊕ e.

3 If M ′ ∈ M(G ) then choose M ′ as your next state. Else,
choose next state as M.
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1 Why is it irreducible?

2 Why is aperiodic?

3 What is the stationary distribution?
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Sources :

1

http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

2 Mixing. D. Randall. A tutorial on Markov chains in the 44th
Symposium on Foundations of Computer Science (FOCS):
4-15, 2003.

3

https://www.math.cmu.edu/ af1p/Teaching/MCC17/Papers/JerrumBook
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