Markov Chain Monte Carlo Methods

Sherry Sarkar

Big O Meeting

・ロト・(四ト・(田下・(日下))の(の)

Markov Chain Monte Carlo Methods

A **Markov chain** is a sequence of random variables $X_0, X_1, ..., X_t$ over some state space \mathcal{X} such that

$$\mathbb{P}(X_t = x_t | X_{t-1} = x_{t-1}, ..., X_0 = x_0) = \mathbb{P}(X_t | X_{t-1} = x_{t-1}).$$

This just means that at any time t, the probability of moving to some state $x' \in \mathcal{X}$ is only dependent on the current state.

Most MCs are *time invariant* meaning that we can succinctly represent the MC as a transition matrix P where, at any time t, $P(x, x') = \mathbb{P}(X_{t+1} = x' | X_t = x)$. Note that the rows add up to 1.

Given an initial distribution across the states μ_0 , after one step of the MC, we have a new distribution across the states

$$\mu_1 = \mu_0 P.$$

With one more step, we get

$$\mu_2 = \mu_1 P.$$

Thus,

$$\mu_t = \mu_0 P^t$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - わぐら

We call a MC **irreducible** if for all states $a, b \in \mathcal{X}$, there exists a t such that

$$P^t(a,b)>0$$

Let T(x) be the set of times $\{t \ge 1 : P^t(x,x) > 0\}$. The **period** of a state x is the greatest common divisor of the set T(x).

Theorem

If a MC is irreducible, then the period of every state is the same.

To gain intuition of what a period is, consider a random walk on a cycle of even length. There are two types of states, even and odd.

Proof:

Say we have two states x and y. Since the MC is irreducible, we know there exits r, l > 0 such that $P^r(x, y) > 0$ and $P^l(y, x) > 0$. Say m = r + l. Then $m \in T(x)$ and $b \in T(y)$. If we have an element $a \in T(x)$ then a can be represented as b - m where $b \in T(y)$. Thus $T(x) \in T(y) - m$ so the gcd of T(y) divides all elements of T(x). Therefore, gcd $T(y) \leq$ gcd T(x). We can do a parallel argument to get $T(x) \leq$ gcd T(y)

(日) (同) (三) (三)

A stationary distribution of a MC is some probability vector such that

$$\pi = \pi P$$

Theorem

If a MC is irreducible and aperiodic, there exists a unique stationary distribution with all entries greater than 0.

Metropolis Hasting Algorithm - Motivation:

Given that we are at state x,

- Pick a neighbor y with probability ¹/_Δ where Δ is the maximum degree of the graph G represented by the MC.
- **2** Move to y with probability min $(1, \frac{\pi(y)}{\pi(x)})$
- 3 With all remaining probability, stay at x.

Theorem

The stationary distribution of this is π assuming the condition of detailed balance.

Three points of interest :

- 1 Is this even a valid transition matrix?
- **2** Is π the actual stationary distribution?
- 3 Is it a unique stationary distribution?

The counting problem : Number of matchings given some graph G

A randomized approximation scheme for a counting problem $f: \Sigma \to \mathbb{N}$ is a randomized algorithm that takes an input x, an error tolerance $\epsilon > 0$ and outputs a number N such that the probability that N is within bounds set by this error is greater than 0.5.

An **almost uniform sampler** for a solution set (like the set of matchings for a graph) is a randomized algorithm that takes an input (like a graph) and a sampling tolerance $\delta > 0$ outputs a solution W which is a random variable of the algorithm such that the distance between the distribution of W and a uniform distribution on the solution set is at most δ^3 .

Theorem

Let G be a graph with n vertices and m edges, where m > 1 to avoid trivialities. If there is an almost uniform sampler for M(G), then there is a randomized approximation scheme for |M(G)|. Some points :

$$|M(G)| = (\alpha_1 \alpha_2 \dots \alpha_m)^{-1}$$

where

$$\alpha = \frac{|M(G_{i-1})|}{|M(G_i)|}$$

Note that

$$M(G_{i-1}) \subset M(G_i)$$

and that $M(G_i) - M(G_{i-1})$ can be mapped injectively into $M(G_{i-1})$ by sending M to M - ei. Thus,

$$\frac{1}{2} \le \alpha \le 1$$

Let Z_i be an indicator function of when $M_i \in M(G_i)$ is in $M(G_{i-1})$.

Markov chain with stationary distribution for an almost uniform sampler: Say you are at state / matching M.

- **1** With probability $\frac{1}{2}$, set the next state to *M*.
- **2** Select $e \in E(G)$ and set $M' = M \oplus e$.
- 3 If $M' \in M(G)$ then choose M' as your next state. Else, choose next state as M.

< 🗇 > < 🖃 > <

э

- **1** Why is it irreducible?
- **2** Why is aperiodic?
- **3** What is the stationary distribution?

Sources :

1

http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

Mixing. D. Randall. A tutorial on Markov chains in the 44th Symposium on Foundations of Computer Science (FOCS): 4-15, 2003.

3

https://www.math.cmu.edu/ af1p/Teaching/MCC17/Papers/Jerrum