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A Markov chain is a sequence of random variables Xp, X1, ..., X;
over some state space X such that

P(Xe = x| Xt—1 = Xt—1, ..., Xo = x0) = P(X¢|Xe—1 = x¢—1).

This just means that at any time t, the probability of moving to
some state x’ € X is only dependent on the current state.

Most MCs are time invariant meaning that we can succinctly

represent the MC as a transition matrix P where, at any time t,
P(x,x") = P(X¢+1 = x'| Xt = x). Note that the rows add up to 1.
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Given an initial distribution across the states pg, after one step of
the MC, we have a new distribution across the states

= poP.
With one more step, we get

p2 = p1P.
Thus,

pe = poP*
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We call a MC irreducible if for all states a, b € X, there exists a t
such that
Pt(a,b) >0

Let T(x) be the set of times {t > 1: P%(x,x) > 0}. The period
of a state x is the greatest common divisor of the set T(x).

Theorem

If a MC is irreducible, then the period of every state is the same.

To gain intuition of what a period is, consider a random walk on a
cycle of even length. There are two types of states, even and odd.
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Proof:

Say we have two states x and y. Since the MC is irreducible, we
know there exits r,/ > 0 such that P"(x,y) > 0 and P/(y,x) > 0.
Saym=r+1. Then me T(x) and b€ T(y). If we have an
element a € T(x) then a can be represented as b — m where

be T(y). Thus T(x) € T(y) — m so the gcd of T(y) divides all
elements of T(x). Therefore, gcd T(y) < ged T(x). We can do a
parallel argument to get T(x) < ged T(y)
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A stationary distribution of a MC is some probability vector such
that

Theorem
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If a MC is irreducible and aperiodic, there exists a unique
stationary distribution with all entries greater than 0.
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Metropolis Hasting Algorithm - Motivation:
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Given that we are at state x,

Pick a neighbor y with probability % where A is the
maximum degree of the graph G represented by the MC.

Move to y with probability min(1 M)

? (x)

With all remaining probability, stay at x.

Theorem

The stationary distribution of this is m assuming the condition of
detailed balance.
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Three points of interest :
Is this even a valid transition matrix?
Is 7 the actual stationary distribution?

Is it a unique stationary distribution?
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The counting problem : Number of matchings given some graph G

A randomized approximation scheme for a counting problem

f : ¥ — N is a randomized algorithm that takes an input x, an
error tolerance € > 0 and outputs a number N such that the
probability that NV is within bounds set by this error is greater than
0.5.

An almost uniform sampler for a solution set (like the set of
matchings for a graph) is a randomized algorithm that takes an
input (like a graph) and a sampling tolerance 6 > 0 outputs a
solution W which is a random variable of the algorithm such that
the distance between the distribution of W and a uniform
distribution on the solution set is at most 3.
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Theorem

Let G be a graph with n vertices and m edges, where m > 1 to
avoid trivialities. If there is an almost uniform sampler for M(G),
then there is a randomized approximation scheme for |M(G)|.
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Some points :
IM(G)| = (a102....apm) 7t

where
_ IM(Gi)

IM(G;))|
Note that
M(G,'_l) C M(G,)

and that M(G;) — M(Gj_1) can be mapped injectively into
M(Gj_1) by sending M to M — ei. Thus,

<a<l

N -

Let Z; be an indicator function of when M; € M(G;) is in M(G;_1).
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Markov chain with stationary distribution for an almost uniform
sampler: Say you are at state / matching M.

With probability % set the next state to M.
Select e € E(G) and set M' = M @ e.

If M' € M(G) then choose M’ as your next state. Else,
choose next state as M.
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Why is it irreducible?
Why is aperiodic?
What is the stationary distribution?
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Sources :

http://pages.uoregon.edu/dlevin/MARKOV /markovmixing.pdf

Mixing. D. Randall. A tutorial on Markov chains in the 44th
Symposium on Foundations of Computer Science (FOCS):
4-15, 2003.

https://www.math.cmu.edu/ aflp/Teaching/MCC17/Papers/Jerrumr
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