
Random Matrices & Beyond
Big O Club @ Georgia Tech

Benjamin R. Bray

Basic Questions
● How can we efficiently generate random objects with a specific structure? e.g.

○ random points on a sphere, distributed uniformly
○ random positive-semidefinite matrix
○ random graphs
○ random differentiable function with bounded derivatives

● How does a deterministic algorithm behave when fed random inputs?
○ what if we generate a random matrix and run np.eig on it?
○ what if we generate a random graph and run Prim’s algorithm to get a spanning tree?

● How can we learn a deterministic map capable of transforming uniformly
random samples to a target distribution?

Three Types of Randomness

Why Random Matrices?
● Dimensionality reduction (Johnson-Lindenstrauss, random projections…)
● Testing e.g. numerical linear algebra implementations

○ LAPACK Benchmarks use a mix of random matrices + known ill-conditioned examples
○ Software fuzzing -- test large software against sampled range of valid inputs (corner cases!)

● Randomized / average-case analysis of algorithms
● Approximation algorithms for computationally hard problems
● Understanding deep learning

○ Rahimi, A., & Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In
Advances in neural information processing systems (pp. 1313-1320).

○ Pennington, J., & Worah, P. (2017). Nonlinear random matrix theory for deep learning. In Advances in Neural Information Processing
Systems (pp. 2634-2643).

○ Choromanski, K. M., Rowland, M., & Weller, A. (2017). The unreasonable effectiveness of structured random orthogonal
embeddings. In Advances in Neural Information Processing Systems (pp. 218-227).

https://en.wikipedia.org/wiki/Fuzzing

Randomness in Games & Art
● Procedural Noise

○ Terrain Generation (Red Blob Games, Minecraft)
○ Fog, fire, smoke, water, etc.
○ Procedural texture / material generation
○ L-systems for generating plants, trees, maps, etc.

(kurtkupser.com)

https://www.redblobgames.com/maps/terrain-from-noise/
https://en.wikipedia.org/wiki/L-system

Johnson-Lindenstrauss, Random Projections

Sampling Fundamentals
● Assume we have access to uniform random samples X~U[0,1]

○ Assume infinite precision for our analysis.
○ In practice, pseudo-random samples with a close-to-uniform distribution are good enough.

● How do we use U[0,1] to generate samples from other distributions?
○ Gaussian, Poisson, Exponential, etc.
○ Discrete distributions?

● Easy Transforms: Scale / Translate / Rotate the input space
○ Arbitrary uniform distribution: U[a,b] = a + (b-a) U[0,1] for any a < b

Fundamentals: Inverse-Transform Sampling
● Algorithm: Sampling from a continuous distribution with cdf F

○ Generate a uniform random sample u ← U[0,1]
○ Find X such that F(X) = u (compute the inverse cdf)

● Pro: Relatively simple, efficient if inverse is known analytically.
● Con: Need to compute inverse.
● Con: Higher dimensions?

Fundamentals: Rejection Sampling
● Basic Idea: Suppose we want random points from a region S in the plane.

○ Generate points from the “bounding box” containing S, and throw out any that aren’t in S!

● Refinement: Sample from density f(x) via a proposal distribution g(x)
○ g(x) should “envelope” f(x), that is, graph of f(x) lies under g(x)
○ sample Y ~ g(y) and U ~ U[0,1]
○ if U < f(Y) / g(Y), accept Y as a sample of f
○ otherwise, reject Y and re-sample

● More Sampling:
○ Importance Sampling
○ MCMC

Fundamentals: Box-Muller Transform
● Algorithm: Box-Muller for Sampling from Unit Gaussian

○ Sample X,Y ~ Unif[0,1]
○ The following are guaranteed to be independent samples with Normal(0,1) distribution

● Non-unit Gaussian?
○ Translate and scale!

Fundamentals: Multivariate Normal
● Def: Random vector X is normally distributed if every linear combination of its

components () is normally distributed.

Fundamentals: Gaussian Process

Random Matrices
(in not nearly enough detail)

Matrix Ensembles

Matrix Ensembles: Circular Laws
How are the eigenvalues of a random matrix distributed?

● Relatively easy to show for GOE, but not proven in general until recently.
● Like a “Central Limit Theorem” for random matrices.

Matrix Ensembles: Circular Laws

Matrix Ensembles: Circular Laws

More Hard Questions
● What’s the distribution of eigenvalues of a random matrix, conditioned on

having k real eigenvalues? (del Molino et al. 2015)
○ Answer: It’s complicated!!

https://www.di.ens.fr/data/publications/papers/1501.03120.pdf

More Hard Questions
● What is the characteristic polynomial of a random unitary matrix?

○ see e.g. [Bourgade et al. 2008]

● How do we generalize the normal distribution to manifolds?
○ [Rains 1997] “Combinatorial Properties of Brownian Motion on the Compact Classical Groups”

● If we solve Ax=b for random A, what is the distribution of floating-point error?
○ [Hennig 2015] “Probabilistic Interpretation of Linear Solvers”

● How to sample a random graph where each node has a specified degree?
○ [Zhao 2014] “A Linear Time Algorithm for Sampling Graphs with Given Degrees”

https://projecteuclid.org/euclid.dmj/1221656862
https://link.springer.com/article/10.1023/A:1022601711176
https://epubs.siam.org/doi/abs/10.1137/140955501
https://hal.inria.fr/hal-01077251/document/#page=372

Random Structured Matrices
How can we generate random matrices with a specific structure?

● Random diagonal matrix?
● Random upper-triangular matrix?
● Random symmetric / Hermitian matrix?
● Random orthogonal / unitary matrix?

What exactly does it mean for a matrix to be random?

Random Structured Matrices
Given a matrix with random entries A = np.random.randn(n,n), we might try:

● Random diagonal matrix diag(randn(n))
● Random symmetric matrix A + A.T
● Random lower-triangular matrix L = np.chol(A)
● Random upper-triangular matrix _,R = np.linalg.qr(A)
● Random orthogonal matrix Q,_ = np.linalg.qr(A)

What is the resulting distribution? Is it sufficiently “uniform”? Can we do better?

Q: How do deterministic algorithms behave when fed
random inputs?

Random Unitary Matrices

Why isn’t the eigenvalue phase distribution uniform?

Random Unitary Matrices

Either 1) Design an algorithm to pick principal values intelligently
 Or 2) Find a way to correct the output of existing algorithms.

Corrected QR

Machine Learning

Generative Modeling
● Modern machine learning is all about learning deterministic functions capable

of mapping U[0,1]^d or N[0,1]^d to arbitrary output distributions
○ Variational Auto-Encoders
○ Generative Adversarial Networks

● More buzzwords:
○ reparameterization trick
○ deep convolutional networks
○ amortization gap

http://kvfrans.com/variational-autoencoders-explained/

http://kvfrans.com/variational-autoencoders-explained/

Log-Sum-Exp Trick (see Tim Viera’s blog)

https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/

Gumbel-Max Trick (see Tim Viera’s Blog)

Gumbel-Max Trick

Concrete Distribution
https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html

https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html

Thank You!

