Random Matrices & Beyond
Big O Club @ Georgia Tech

Benjamin R. Bray

Basic Questions

e How can we efficiently generate random objects with a specific structure? e.g.
o random points on a sphere, distributed uniformly
o random positive-semidefinite matrix
o random graphs
o random differentiable function with bounded derivatives
e How does a deterministic algorithm behave when fed random inputs?
o what if we generate a random matrix and run np.eig on it?
o what if we generate a random graph and run Prim’s algorithm to get a spanning tree?

e How can we learn a deterministic map capable of transforming uniformly
random samples to a target distribution?

Three Types of Randomness

(a) Uniformly Random

(b) Uniformly Spaced

(c) Rare Events

Fig. 1. Uniformly random samples naturally vary in density. The uniformly-spaced samples
generated by the Poisson Disc algorithm better match our intuition, but are no longer

independent. The last image is an informal depiction of “edge cases”.

Why Random Matrices?

e Dimensionality reduction (Johnson-Lindenstrauss, random projections...)

e TJesting e.g. numerical linear algebra implementations
o LAPACK Benchmarks use a mix of random matrices + known ill-conditioned examples
o Software fuzzing -- test large software against sampled range of valid inputs (corner cases!)

e Randomized / average-case analysis of algorithms
e Approximation algorithms for computationally hard problems
e Understanding deep learning

@) Rahimi, A., & Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In
Advances in neural information processing systems (pp. 1313-1320).

o Pennington, J., & Worah, P. (2017). Nonlinear random matrix theory for deep learning. In Advances in Neural Information Processing
Systems (pp. 2634-2643).

o Choromanski, K. M., Rowland, M., & Weller, A. (2017). The unreasonable effectiveness of structured random orthogonal
embeddings. In Advances in Neural Information Processing Systems (pp. 218-227).

https://en.wikipedia.org/wiki/Fuzzing

Randomness in Games & Art

e Procedural Noise

o Terrain Generation (Red Blob Games, Minecraft)
Fog, fire, smoke, water, etc.
Procedural texture / material generation
L-systems for generating plants, trees, maps, etc.

o O O

elevation[y][x]

1 * noise(l * nx, 1 * ny);
0.5 * noise(2 * nx, 2 * ny);
©.25 * noise(4 * nx, 2 * ny);

+ + |

https://www.redblobgames.com/maps/terrain-from-noise/
https://en.wikipedia.org/wiki/L-system

Johnson-Lindenstrauss, Random Projections

A related lemma is the distributional JL lemma. This lemma states that forany 0 < £, & < 1/2 and positive integer 4,

there exists a distribution over R* * ¢ from which the matrix A is drawn such that for k = O(E-2|Og(1/5]) and for any
unit-length vector x € R the claim below holds.”!

P(|||Az|]2 — 1| >€) < &

One can obtain the JL lemma from the distributional version by setting & = (u — v) /||y — v||z and § < 1/n? for

some pair u,v both in X. Then the JL lemma follows by a union bound over all such pairs.

Sampling Fundamentals

e Assume we have access to uniform random samples X~U[0,1]

o Assume infinite precision for our analysis.

o In practice, pseudo-random samples with a close-to-uniform distribution are good enough.
e How do we use U[0,1] to generate samples from other distributions?

o Gaussian, Poisson, Exponential, etc.

o Discrete distributions?
e Easy Transforms: Scale / Translate / Rotate the input space

o Arbitrary uniform distribution: U[a,b] =a + (b-a) U[0,1] foranya <b

Fundamentals: Inverse-Transform Sampling

e Algorithm: Sampling from a continuous distribution with cdf F
o Generate a uniform random sample u — U[0,1]
o Find X such that F(X) =u (compute the inverse cdf)

e Pro: Relatively simple, efficient if inverse is known analytically.
e (Con: Need to compute inverse.
e Con: Higher dimensions?

F(x) : camulative distnibution function

Fundamentals: Rejection Sampling

e Basic ldea: Suppose we want random points from a region S in the plane.
o Generate points from the “bounding box” containing S, and throw out any that aren’t in S!

e Refinement: Sample from density f(x) via a proposal distribution g(x)

o g(x) should “envelope” f(x), that is, graph of f(x) lies under g(x)

o sample Y ~ g(y) and U ~ U[0,1]

o ifU<f(Y)/g(Y), acceptY as a sample of f :

o otherwise, reject Y and re-sample B
e More Sampling:

o Importance Sampling

o MCMC

area A

[fax .

Fundamentals: Box-Muller Transform

e Algorithm: Box-Muller for Sampling from Unit Gaussian
o Sample X,Y ~ Unif{0,1]
o The following are guaranteed to be independent samples with Normal(0,1) distribution

Zy = Rcos(©) = /—21InU, cos(2nU>)
Z, = Rsin(0©) = /—2InU, sin(27U,).

700 4
e Non-unit Gaussian? w00 |
o Translate and scale! 500 |
400 A
Box-Muller
def normal_sample(num, a): 300 -
num //= 2;
first = np.sqrt(-2*np.log(np_rnd.random(num))); 200 -
u2 = 2*np.pi*np_rnd.random{num);
return np.concatenate([first*np.cos(u2), first*np.sin(u2)]); 100 -
0 -

plt.hist(normal_sample(100@0, 1), bins=50);

Fundamentals: Multivariate Normal

e Def: Random vector X is normally distributed if every linear combination of its
components (Y = a1 Xy +--- + ax Xi) is normally distributed.

To sample from a multivariate Gaussian N'(u, X) for £ € R¥*4, multivariate gaussian: samples

6
1. Compute the Cholesky decomposition X = AAT for lower-triangular A € R%4
_) id
2. Sample d independent standard normals Z, ..., Z4 ~ N(@O, 1 .
3. Compute Xx = u+ AZg. The vector (X 1. ..., Xq) will be a sample from N (u,).
: 21
def gaussian_sample(mean_vec, cov_mat, num_samples=1):
d = len(mean_vec);
assert(cov_mat.shape == (d,d)); 0
Step 1: compute cholesky factor
A = np.linalg.cholesky(cov_mat);
Step 2: sample d independent normals =2 1
z = np.random.randn(d, num_samples);
Step 3: skew independent samples by A to correlate them *
return A @ z + mean_vec[:,np.newaxis]; -4 T T T T T

Fundamentals: Gaussian Process

A Gaussian process is a stochastic process (X),es such that any finite subeollection of the X, forms
a Gaussian vector. In particular, (X;)ier ~ GP(p, k) is a Gaussian process with mean function
pu: I —» R and covariance function k : I x I —» R if for any finite index set {t;,1,,..., bt Gl

|X¢.I ll‘(tl)] Ik(thtl) k(tlﬁtvn)]
s | AT o | : . :

x..] lutt)] [tmt) - Kt)

aussian process (sgexp) aussian process (periodic) aussian process (linear)
10.0 9 P qexp 10.0 9 P P 10.0 9 P
7.5 1 7.5 4 7.5 1
5.0 1 5.0 1 5.0 1
25 1 25 1 25
=251 =25 25 def gp_sample(x, mean_func, cov_func, **kwargs):
5.0 - 5.0 1 50 mean_vec = mean_func(x);
cov_mat = cov_func(x, **kwargs);
=75 1 =751 =151 return gaussian_sample(mean_vec, cov_mat);
-10.0 T T T -10.0 T T -10.0 T T T

Random Matrices

Matrix Ensembles

A matrix ensemble is a probability distribution over a family of matrices.

 Gaussian Orthogonal Ensemble (GOE): R"*" with real Gaussian entries
« Gaussian Unitary Ensemble (GUE): C™*" with complex Gaussian entries
e Gaussian Symplectic Ensemble: Gaussian quaternion entries

Note: GOE and GUE are invariant under orthogonal and unitary
transformations, respectively. They do not necessarily produce random
orthogonal and unitary matrices)

Matrix Ensembles: Circular Laws

How are the eigenvalues of a random matrix distributed?

Thm: (Tao 2007) Let M,, € C™*™ have complex entries drawn iid from a

distribution with mean O and variance 1. Then as n — 00, the distribution of the
eigenvalues of —L_ M tends to the uniform distribution on the unit disk.

NG

e Relatively easy to show for GOE, but not proven in general until recently.
e Like a “Central Limit Theorem” for random matrices.

Matrix Ensembles: Circular Laws

Eigenvalues of Random 50x50 Complex Matrix Eigenvalues of Random 50x50 Real Matrix

15

10

05

0.0

-15

-15 -1.0 -05 0.0 05 10 15 -1.0 -05 0.0 05 10

Matrix Ensembles: Circular Laws

The circular law is verified empirically in Figure 4 for the Gaussian ensembles. For the Eigenvalues of Random S0x50 Real Matrix
real case on the right. there is an unexpected concentration of eigenvalues exactly on . g gk %
X x x
2 PR mx
SR 2 *

the real line, suggesting that the eigenvalue distribution is not absolutely continuous L
with respect to Lebesgue measure. The joint eigenvalue density for the GOE was :
worked out explicitly by (Edelman 1997) and integrated, leading to the following
computation:

Theorem 2. (Edelman 1997) Let M € R™ ™ have independent standard normal
entries. The probability that M has k eigenvalues has the form r + $V2 for some :
rational r,s € Q. In particular, the probability that a random matriz has all real x
eigenvalues is 1/27(n=1)/4,

More Hard Questions

e \What's the distribution of eigenvalues of a random matrix, conditioned on

having k real eigenvalues? (del Molino et al. 2015)

o Answer: [t’'s complicated!!
1.5 . - . - 1.5

a b

1t . e : 1

05} 0.5

£ £
£ £

-0.5 -0.5

-1 -1

-15 -1.5

-15 -1 =05 0 05 1 15 -15 -1 -05 05 1 15

https://www.di.ens.fr/data/publications/papers/1501.03120.pdf

More Hard Questions

e \What is the characteristic polynomial of a random unitary matrix?
o see e.g. [Bourgade et al. 2008]
e How do we generalize the normal distribution to manifolds?
o [Rains 1997] “Combinatorial Properties of Brownian Motion on the Compact Classical Groups”
e If we solve Ax=b for random A, what is the distribution of floating-point error?
o [Hennig 2015] “Probabilistic Interpretation of Linear Solvers”

e How to sample a random graph where each node has a specified degree?
o [Zhao 2014] “A Linear Time Algorithm for Sampling Graphs with Given Degrees”

https://projecteuclid.org/euclid.dmj/1221656862
https://link.springer.com/article/10.1023/A:1022601711176
https://epubs.siam.org/doi/abs/10.1137/140955501
https://hal.inria.fr/hal-01077251/document/#page=372

Random Structured Matrices

How can we generate random matrices with a specific structure?

Random diagonal matrix?

Random upper-triangular matrix?
Random symmetric / Hermitian matrix?
Random orthogonal / unitary matrix?

What exactly does it mean for a matrix to be random?

Random Structured Matrices

Given a matrix with random entries A = np.random.randn(n,n), we might try:

e Random diagonal matrix diag(randn(n))

e Random symmetric matrix A+ A.T

e Random lower-triangular matrix = np.chol(A)

e Random upper-triangular matrix ,R = np.linalg.qr(A)
e Random orthogonal matrix Q,_ = np.linalg.qr(A)

What is the resulting distribution? Is it sufficiently “uniform™? Can we do better?

Q: How do deterministic algorithms behave when fed
random inputs?

0.200

0.150

Random Unitary Matrices O s

A matrix U € C™"™" is unitary if it has orthonormal columns UU* = 1I. 01251

0.100 A

. Eigenvalues A = €% have unit modulus and |detU| = 1 0075 ;
 In the real case, can roughly be thought of as rotations/reflections 0.050 1
0.025 ¢
Mezzadri 2006 TS 5 1 7 %

def standard qr(n):

0.20

sample from GUE

Z = randn(n,n) + lj*randn(n,n) / np.sqrt(2); L1519
standard qr factorization 010 |
Q,R = np.linalg.qr(Z); 0.05 -
return Q; 0.00 |

Why isn’t the eigenvalue phase distribution uniform?

-0.2 0.1 00 01

Random Unitary Matrices

The QR decomposition is not unique. Let Z € GL(n, C) and suppose Z = QR, where
Q is unitary and R upper-triangular. Then for any A = diag(ew1 5853 eifn)

Z=QR=(QA")(AR)
is a different valid QR factorization of Z. Therefore QR factorization is a multi-valued map
QR : GL(n,C) — Unitary(n) x InvUpperTri(n)
Different factorization algorithms choose different principal values.

Either 1) Design an algorithm to pick principal values intelligently
Or 2) Find a way to correct the output of existing algorithms.

Corrected QR

Lemma 2. Let Z € C"*™ have two valid QR decompositions Z = Q1R1 = Q2R>.
Then, there is A € A,(C) such that Q2 = Q2A~"! and R> = AR,.

Consider the quotient group I,(C) = T,,(C) /A, (C). Our corrected algorithm will be
a one-to-one map

QR : GL,(C) = U,.(C) x IL,(C)

The upper-rectangular matrix returned by the corrected algorithm will be a represen-
tative v of I,(C). If we choose the map QR to be unitarily invariant with respect to
~, that is,

Zw (Q,y) = UZw— (UQ,%) for all UinU,(C)

then by Lemma 1, the algorithm (‘iﬁ with input from a Gaussian Unitary Ensemble
will be distributed according to the Haar measure on U, (C). It can be shown that the

def haar measure(n):
sample from Ginibre ensemble
Z = randn(n,n) + 1j*randn(n,n) / np.sqrt(2);
standard qr factorization
Q,R = np.linalg.qr(Z);
correction
d = np.diag(R);
PH = np.diag(d) / np.absolute(d);
return Q @ PH;

0.200

0.175 A

0.150 1

0.125 A1

0.100 1

0.075 A1

0.050 1

0.025 A

0.000

0.15 1

0.10

0.05

0.00

—0.05 1

—-0.10 1

-0.15

Machine Learning

Generative Modeling

e Modern machine learning is all about learning deterministic functions capable
of mapping U[0,1]*d or N[0,1]*d to arbitrary output distributions
o Variational Auto-Encoders
o Generative Adversarial Networks

e More buzzwords:

() reparameterization trick mean vector
o deep convolutional networks Losampled
o amortization gap
2 S
Encoder —p| Decoder
Network S] P Network
(conv) (deconv)

standard deviation
vector

http://kvfrans.com/variational-autoencoders-explained/

http://kvfrans.com/variational-autoencoders-explained/

Log-Sum-Exp Trick (see Tim Viera's blog)

Supposcd you'd like to evaluate a probability distribution 7 paramctrizcd by a

def exp_normalize(x):
b = x.max()
y = np.exp(x - b)
return y / y.sum()
- exp(z;)

Ny — =~
i1 exp(z;)

vector & € R™ as follows:

>>> exp_normalize(x)
array([0., 0., 1.])
The exp-normalize trick leverages the fo]lowing identity to avoid numerical

overflow. For any b € R,

exp(z; —b)exp(b) exp(z; —b)

= n n
j=1 exp(z; — b) exp(b) j=1 exp(z; — b)

In other words, the #r is shift-invariant. A reasonable choice is b = max? | z;.

https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/

Gumbel-Max Trick (see Tim Viera's Blog)

The Gumbel-max trick:

Y = argmax I; + 2;
ie{l,--- K}

where z; - - - 2k are i.i.d. Gumbel(0, 1) random variates. It turns out that y is

distributed according to . (See the short derivations in this blog post.)

Implementing the Gumbel-max trick is remarkable easy:

def gumbel_max_sample(x):
z = gumbel(loc=0, scale=1, size=x.shape)
return (x + z).argmax(axis=1)

If you don't have access to a Gumbel random variate generator, you can use

— log(— log(Uniform(0, 1))

Gumbel-Max Trick

The Gumbel-Max trick is a way to sample from log-parameterized (ax = log mx) discrete
distributions.

Z1s oo s Zn 4 Gumbel(0, 1)

y=arg max {a;+ z;} ~ Discrete(xy, ... , 7,)
j=l....n

Comparison to inverse sampling:

def

Gumbel-max requires N uniform samples to generate one discrete sample, compared to
one uniform sample for the inverse CDF method.

If we are sampling K values, using uniform variables to generate Gumbel samples, we
require 2K calls to log, whereas the inverse method requires K calls to exp. Both log and
exp are expensive.

Gumbel-max can be used to sample in a streaming fashion. Notice that the probabilities
are unnormalized and the terms in the argmax don't depend on each other. If we partially
evaluate the arg max without seeing all indices, our y will be a discrete sample from the
indices seen so far! See this blog post by Tim Viera for an application to reservoir
sampling.

discrete_sample_gumbelmax(log_probs):

1. sample gumbel variables

z = gumbel_sample_invcdf(log_probs.shape[@]);
2. arg max

return np.argmax(log_probs + z);

Concrete Distribution

https://casmls.qithub.io/general/2017/02/01/GumbelSoftmax.html

https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html

Thank You!

