PARADOXES

AIM OF WORKSHOP

WHY DO WE NEED PROOFS?

Does every statement need a proof?
Some statements seem pretty intuitive. Why not leave it at that?

How do I convince someone else my statement is true?

FORMAT OF WORKSHOP

We'll walk through a few examples here.
Rest of the time will focus doing the workshop handout.

Go home and do the problems you can't solve here! Or read about the cool topics we name drop here!

Use the Slack to share interesting proofs / facts!

SELF
 REFERENCE

INTERESTING NUMBERS

CLASSIFYING NATURAL NUMBERS

\square Consider the set of natural numbers $=\{7,2,3, \ldots\}$

- Do you all think every natural number is interesting?
$\square 1$ is pretty interesting. It's the first one.
$\square 1729$ is pretty interesting. It's the smallest sum of 2 cubes in two different ways.

With this we define a partition of the natural numbers into interesting and not interesting.

CLASSIFYING NATURAL NUMBERS

\square Consider the set of not interesting numbers.
\square There's going to be a smallest not-interesting number.
\square That's kind of interesting...

- Contradiction! (?)

WHAT WENT WRONG?

\square Formalize what "interesting" means.
\square Maybe: "Appears in OEIS"? Then this is a well defined question.

SET

 THEORY

 THEORY}

RUSSELL'S PARADOX

DEFINE A SET

\square In math, we'll talk about things. Things like
\square The integers.
\square Various shapes.
$\square \quad$ The even integers.
\square Basically, we often talk about a group, a collection, a set of things.
"A set is a gathering together into a whole of definite, distinct objects of our perception [Anschauung] or of our thought-which are called elements of the set." -- Georg Cantor

DEFINE A SET

\square Definition 1: A set is a collection, a gathering of distinct things.
\square You can describe sets with set builder notation:
$\square A=\{x: x$ is an even integer $\}$

- $B=\{x: x$ is a person in this room $\}$
$C=\{x: x$ is a subset of $A\}$

CAN WE PUT JUST ANYTHING AFTER THE ":"?

- You can describe sets with set builder notation:
\square We call a set, D, normal if the set D is not an element of itself
$\square \quad$ The set of people in this room is a normal set
- The set $\{A, B, C,\{A, B, C\}\}$ is (normal/not normal)?
\square Can someone try describing a not normal set?

CAN WE PUT JUST ANYTHING AFTER THE ":"?

\square We call a set, D, normal if the set D is not an element of itself.
\square Consider the set of sets
$\square \quad N=\{x: x$ is normal $\}$

- Is N normal?

WHAT?? WHAT WENT WRONG? :(()(1)

CAN WE PUT JUST ANYTHING AFTER THE ":"?

\square Consider the set of sets
$\square \quad N=\{x: x$ is normal $\}$
\square We cannot put anything we want after the :
$\square \quad$ Can we make set theory axioms which don't run into paradoxes?

COUNTING

THE REAL NUMBERS

FUNCTIONS: CRASH COURSE

FUNCTIONS: INJECTION/1 to 1

DEF: A function f is injective if for every element in Y there is at most 7 element in X that maps to it

FUNCTIONS: SURJECTIVE/ONTO

DEF: A function f is surjective if for every element in Y there is at least 7 element in X that maps to it

FUNCTIONS: BIJECTION

DEF: A function f is bijective if for every element in Y there is exactly 7 element in X that maps to it

DEFINE THE SIZE OF A SET

Any guesses?
A set A has size n if there exists a bijection from A to the numbers $\{7,2,3, \ldots, n\}$

THINGS ARE INTERESTING WITH

 INFINITE SETS
$A=\{0,1,2,3, \ldots\} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $B=\{1,2,3, \ldots\}$
 Are A and B the same size?
 \title{

 1323456

 1323456}$$
\begin{aligned}
& A=\{x: x \text { is an integer }\} \\
& B=\{x: x \text { is an even integer }\}
\end{aligned}
$$

LET'S COUNT THE REAL NUMBERS

What's the cardinality of the real numbers?
Let's make a bijection to the natural numbers.
Say there exists a bijection to the natural numbers.

CANTOR'S DIAGONALIZATION ARGUMENT

Say we have a way to enumerate the real numbers

$$
\begin{aligned}
& s_{1}=00000000000 \ldots \\
& s_{2}=11111111111 \ldots \\
& s_{3}=01010101010 \ldots \\
& s_{4}=10101010101 \ldots \\
& s_{5}=11010110101 \ldots \\
& s_{6}=00110110110 \ldots \\
& s_{7}=10001000100 \ldots \\
& s_{8}=00110011001 \ldots \\
& s_{9}=11001100110 \ldots \\
& s_{10}=11011100101 \ldots \\
& s_{11}=11010100100 \ldots \\
& \begin{array}{cc}
s_{11}=1 \\
\vdots & \vdots \\
\hline
\end{array}
\end{aligned}
$$

$$
s=10111010011 \ldots
$$

s differs from s_n in the nth spot. So where does s go in this list?

CONTRADICTION!!!!

The real numbers does not have cardinality equal to the natural numbers.

There are multiple types of infinity!

Look up "Continuum Hypothesis"

TOMORROW'S WORKSHOP:

FORMAL INTRODUCTION TO PROOFS
 KLAUS 2447 @ 6:30 P.M

Slides Carnival

Free templates for all your presentation needs

