WORKSHOP 2 ALVIN CHIU

INTRODUCTION TO THEORY CS: PROOFS

- Prove that $6|(7^n 1)$ for all positive integers n. (From The Art and Craft of Problem Solving) 1.
- Prove that $1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2$ (from AoPS). 2.
- Every positive integer greater than 1 is a product of primes. 3.
- Prove that the *n*th fibonacci number F_n is at most 2^n 4.
- We say that f = O(g) if there exists an integer N and a constant c such that 5.

 $f(n) \le c \cdot g(n)$

for all n > N. Prove

- $n^3 + n^2 = O(n^3)$
- $\sum_{k=1}^{n} k^c = O(n^{c+1})$ for any constant c > 0. $n^{c+1} = O(\sum_{k=1}^{n} k^c)$ for any constant c > 0.
- 6. Suppose that B is such that AB = BA = A for all matrices $A \in \mathbb{R}^{n \times n}$ then B = I.
- 7. (a) Is the product of two irrational numbers irrational?
 - (b) Is the sum of two irrational numbers irrational?
 - (c) Is an irrational number raised to an irrational number also an irrational number?
- 8. Prove the Pigeonhole Principle: "if n items are put into m containers, with n > m, then at least one container must contain more than one item." (Stolen from Wikipedia)
- McDonalds only sells chicken nuggets in packs of 6 and 7. What is the biggest number of nugs that 9. cannot be ordered. Prove that no number bigger than this can be done.
- 10. Let a_0 and b_0 be integers, and consider the following algorithm (Euclid's algorithm). Start with i = 0and repeat:

1. Find some integers q and r with r < b such that $a_i = qb_i + r$ 2.Set $a_{i+1} = b_i$ and $b_{i+1} = r$. 3.Repeat until $b_i = 0$. Output a_i .

Answer the following two questions:

1. Prove that the output of this algorithm is the greatest common divisor of a_0 and b_0 .

2.Prove the algorithm runs in $O(\log b_0)$ time (assuming basic operations take constant time).

- 11. Prove that the set of all finite subsets of the natural numbers is countable.
- 12. If five points are on a sphere, then some four are on a hemisphere.
- 13. Prove that for any $a, b \neq 0 \mod p$ and any c we have that there exist x, y such that $ax^2 + by^2 = c$ $\mod p$.
- 14. Prove that there are an infinite amount of primes. **Hint:** Try proof by contradiction.
- 15. Prove that there are an infinite amount of primes of the form 4k + 3.
- 16. (Cauchy Induction) Prove the AM-GM inequality if a_1, \ldots, a_n are positive reals then

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

1