Introduction to Theory CS: Workshop 2
 Proofs

Alvin Chiu
Georgia Tech University

September 11, 2019

Outline

1 What is a proof?

- Motivation

■ Logic

2 Types of Proofs
■ Direct Proof

- Contrapositive

■ Contradiction

- Induction

What do we need in a proof?

- A mathematical proof shows that the stated assumptions logically imply the conclusion.

What do we need in a proof?

- A mathematical proof shows that the stated assumptions logically imply the conclusion.
- Axioms are the "rules of the game", which we assume to be true without proof.
■ Logic is the deductive reasoning we use to go from the axioms and assumptions to the conclusion.

What do we need in a proof?

- A mathematical proof shows that the stated assumptions logically imply the conclusion.
- Axioms are the "rules of the game", which we assume to be true without proof.
■ Logic is the deductive reasoning we use to go from the axioms and assumptions to the conclusion.
■ Example of how we use logic every week!
- Axiom: If today is Friday, then I don't have to do my homework.
- Assumption: Today is Friday.
- Conclusion: Therefore, I don't have to do my homework!

How should we think about proofs?

■ Math Proofs: Statement and Reason vs Structured Proofs

- A proof is a list of true statements and reasons for that.
- A proof has a structure to it, using various techniques.

How should we think about proofs?

■ Math Proofs: Statement and Reason vs Structured Proofs
■ A proof is a list of true statements and reasons for that.
■ A proof has a structure to it, using various techniques.
■ CS Programs: Unstructured vs Structured Programming
■ Assembly (unstructured): run a program through a set of instructions using goto statements.
■ C (structured): run a program through subroutines.

Propositional Logic

■ We can write statements in terms of logical operations.

- $P \vee Q=P$ or Q
- $P \wedge Q=P$ and Q
- $\neg P=\operatorname{not} P$
- $P \rightarrow Q=\neg P \vee Q=$ If P then Q

Propositional Logic

- We can write statements in terms of logical operations.
- $P \vee Q=P$ or Q
- $P \wedge Q=P$ and Q
- $\neg P=\operatorname{not} P$
- $P \rightarrow Q=\neg P \vee Q=$ If P then Q

■ I am either going to eat at Nave or Brittain Dining Hall. - Let P stand for "I eat at Nave" and Q stand for "I eat at Brittain".

- This is equivalent to $P \vee Q$.

Propositional Logic

■ We can write statements in terms of logical operations.
■ $P \vee Q=P$ or Q

- $P \wedge Q=P$ and Q

■ $\neg P=\operatorname{not} P$
■ $P \rightarrow Q=\neg P \vee Q=$ If P then Q
■ I am either going to eat at Nave or Brittain Dining Hall.
■ Let P stand for "I eat at Nave" and Q stand for "I eat at Brittain".

- This is equivalent to $P \vee Q$.

■ Either Bill is at work and Jane isnt, or Jane is at work and Bill isnt.

■ Let B stand for "Bill is at work" and J stand for "Jane is at work."
■ This is equivalent to $(B \wedge \neg J) \vee(\neg B \wedge J)$.

Direct Proof

- To prove a conclusion of the form $P \rightarrow Q$:
- Direct Proof: Assume P is true and then prove that Q is true.

Direct Proof

- To prove a conclusion of the form $P \rightarrow Q$:
- Direct Proof: Assume P is true and then prove that Q is true.

■ Example: If a and b are even integers, then $a+b$ is an even integer.

- Definition: Let n be an integer. If there exists an integer k such that $n=2 k$, then n is even.
■ By definition of even integer, there exists integer k and $/$ such that $a=2 k$ and $b=2 l$. Then $a+b=2 k+2 l=2(k+l)$. Since $k+l$ is an integer, $a+b$ is an even integer.

Proof by Contrapositive

■ Note that in logic, $P \rightarrow Q=\neg Q \rightarrow \neg P$. We call $\neg Q \rightarrow \neg P$ the contrapositive of $P \rightarrow Q$.

- To prove a conclusion of the form $P \rightarrow Q$:
- Proof by Contrapositive: Assume Q is false $(\neg Q)$ and then prove that P is false $(\neg P)$.

Proof by Contrapositive

■ Note that in logic, $P \rightarrow Q=\neg Q \rightarrow \neg P$. We call $\neg Q \rightarrow \neg P$ the contrapositive of $P \rightarrow Q$.

- To prove a conclusion of the form $P \rightarrow Q$:
- Proof by Contrapositive: Assume Q is false $(\neg Q)$ and then prove that P is false $(\neg P)$.
■ Example: If $a b$ is an even integer, then either a or b is even.

Proof by Contrapositive Example

- If $a b$ is an even integer, then either a or b is even.

■ Can you prove this directly using our assumptions?

Proof by Contrapositive Example

- If $a b$ is an even integer, then either a or b is even.

■ Can you prove this directly using our assumptions?

- We don't know that $a b=2 k$ implies that 2 divides a or b yet!

Proof by Contrapositive Example

■ If $a b$ is an even integer, then either a or b is even.
■ Can you prove this directly using our assumptions?
■ We don't know that $a b=2 k$ implies that 2 divides a or b yet!
■ Note that in logic, the statement we want to prove is $P \rightarrow(Q \vee R)$. The contrapositive of $P \rightarrow(Q \vee R)$ is

$$
\neg(Q \vee R) \rightarrow \neg P=(\neg Q \wedge \neg R) \rightarrow \neg P
$$

■ We proceed with proof by contrapositive. Assume that a and b are both not even, so they are odd. Let $a=2 m+1$ and $b=2 n+1$ for integers m and n. Then

$$
a b=(2 m+1)(2 n+1)=4 m n+2 m+2 n+1=2(2 m n+m+n)+1 .
$$

Since $2 m n+m+n$ is an integer, $a b$ is odd, so it is not even.

- This completes the proof!

Proof by Contradiction

- To prove a conclusion of the form P :

■ Assume $\neg P$ is true. Then try to reach a contradiction. Once you have reached a contradiction, you can conclude that $\neg P$ is false.

- A contradiction is when you have the statement $P \wedge \neg P$. Both cannot be true at the same time, so the assumption must be wrong.

Proof by Contradiction

- To prove a conclusion of the form P :

■ Assume $\neg P$ is true. Then try to reach a contradiction. Once you have reached a contradiction, you can conclude that $\neg P$ is false.

- A contradiction is when you have the statement $P \wedge \neg P$. Both cannot be true at the same time, so the assumption must be wrong.
- Example: Prove that $\sqrt{2}$ is irrational.
- Definition: A number is irrational if it cannot be expressed as a fraction $\frac{p}{q}$ for any integers p and q.
- If we want to prove this directly, we need to show that $\sqrt{2} \neq \frac{p}{q}$ for ALL integers p and q ! That doesn't sound fun.

Proof by Contradiction Example

Instead, we use proof by contradiction! Assume that $\sqrt{2}=\frac{p}{q}$ for some integers p and q, where p and q share no common factors (otherwise, we would just simplify the fraction).

- By algebra, $\sqrt{2}=\frac{p}{q} \Longrightarrow 2=\frac{p^{2}}{q^{2}} \Longrightarrow p^{2}=2 q^{2}$
- Since $p^{2}=2 q^{2}$ and q^{2} is an integer, p^{2} is even.
- Since p^{2} is even, p must also be even. Let $p=2 r$ for some integer r.
- Then $p^{2}=4 r^{2}=2 q^{2} \Longrightarrow 2 r^{2}=q^{2}$.
- Hence, q^{2} is even, So q is even.

■ Both p and q are even, so they share a common factor of 2 . But we assumed they shared no common factors! So we have a contradiction.
Thus, $\sqrt{2}$ is irrational.

Mathematical Induction

- To prove a conclusion of the form "For all $n \in \mathbb{N}, P(n)$ ":
- Base Case: Prove that $P(1)$ is true.
- Induction Step: Prove that for all

$$
k \in \mathbb{N}, P(k) \Longrightarrow P(k+1)
$$

- Example: Prove that $1+2^{1}+\cdots+2^{n}=2^{n+1}-1$.
- Base Case: $P(1)$ is true, since $1+2^{1}=2^{2}-1$.
- Induction Step: Assume $1+\cdots+2^{k}=2^{k+1}-1$. Then

$$
1+\cdots+2^{k}+2^{k+1}=2^{k+1}-1+2^{k+1}=2^{k+2}-1
$$

- This completes the induction!

Recap

- A proof is a logical argument using true statements.

■ A proof is more than just a list of statements and reasons, it has structure to it.

- There are many techniques used in proofs. In more complex proofs, multiple techniques are often used!
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction
- Mathematical Induction

