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Which of the following sorting algorithms is “better”?

Selection sort: find the least element, swap with the first element of the 
array, and then repeat for the second-least element, swapping with the 
second element, etc.

Bogo sort: while the list isn’t sorted, shuffle it.
(clearly, bogo sort)
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Typically, when we consider multiple choices for an algorithm, we compare them 
by looking at tradeoffs in time and memory.

Usually, we care about these tradeoffs as the size of our input to the program, 
denoted n, increases. This is because for small n, other costs tend to dominate.

However, it’s often hard (and unnecessary) to characterize runtime and memory 
usage explicitly in terms of n – is there something better we can use?
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Big O notation is a mathematical notation we can use to describe the asymptotic 
behavior of a function (i.e. as its argument increases and approaches infinity).

Definition: f(n) = O(g(n)), or f(n) is “in O(g(n))” if and only if there exists some C 
and n0 such that |f(n)| ≤ C g(n) for all n ≥ n0.

In English: a function f is in Big O of another function g if there’s some point 
where for any larger values of the argument, f is bounded by a constant multiple 
of g.

A pair of values C, n0 that show this for some f and g are said to be witnesses.
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n2 = O(n3)

4 n (n-1) = O(n2)

n log n = O(n2)

n! = O(nn)
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bound its asymptotic complexity.

e.g. let f(n) represent the time it takes me to make n slides for this presentation. 
We can think of Sherry saying “Neil make slides” as the algorithm, and n as the 
input (the number of slides needed for Sherry to be happy with the presentation).

Since each slide will take Neil roughly the same amount of time to make (constant 
time is O(1)), it’s going to take him n * O(1) = O(n) time to make n slides.
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Can we do better?



Big O - Sorting

Can we do better?

NO!
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Here’s the Sherry-mandated proof of this workshop:

We can prove that any comparison based sort must require at least O(n log n) 
comparisons:

Suppose we’re sorting a list [a1, a2, … , an]. A single comparison between elements 
i and j returns the answer to whether ai > aj. Observe the following: without 
knowing anything about the elements, there are n! possible permutations, any of 
which could be the possible correct sorted list (why?).
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Whenever we observe a comparison, we can at most rule out half of the 
remaining possible permutations. This is because if any given comparison were 
to rule out significantly more than half of the permutations, we could 
“adversarially” choose to give the opposite result for that comparison (if a 
comparison is to be useful, then the results of the comparison divide the 
remaining “valid permutation set” into two non-overlapping subsets), forcing it to 
result in leaving significantly fewer than half of the permutations.

Therefore, our “worst case” is actually when a comparison rules out exactly half 
of the remaining permutations. From here, simple math will give us the number of 
comparisons we need.
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Sorting Lower Bound Proof

The number of consistent permutations left after observing t comparisons is 
therefore n! * (1/2)t. By definition, we are done sorting when there is only one 
permutation left. Solving for t, 

n! * (1/2)t ≤ 1
n! ≤ 2t

log2n! ≤ log22t = t

By Stirling’s Approximation,
log2n! = n log2n - n log2e + O(log2n) ≤ t

By definition of big O,
t = O(n log2n) - O(n) + O(log2n) = O(n log n) 
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Let’s analyze some Meme Sorts!

Let’s get back to this question: which of the following sorting algorithms is 
“faster”?

Selection sort: find the least element, swap with the first element of the 
array, and then repeat for the second-least element, swapping with the 
second element, etc.

Finding the least element is an O(n) operation. Swapping this with another 
element is an O(1) operation. However we repeat this O(n) times, so we have 
O(n) * (O(n) + O(1)) = O(n2). Note that on the kth iteration, we can technically 
only look at the last n-k elements, which means we’re actually O(n + (n-1) + 
(n-2) + … + 1). But this is just O((n)(n-1)/2) = O(n2)!
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Let’s analyze some Meme Sorts!

Let’s get back to this question: which of the following sorting algorithms is 
“faster”?

Bogo sort: while the list isn’t sorted, shuffle it.

This is left as an exercise to the reader.



More Meme Sorts!

Stalin Sort: Delete any elements that aren’t in order (send them to the gulag).



More Meme Sorts!

Stalin Sort: Delete any elements that aren’t in order (send them to the gulag).

Time Sort (Sleep Sort): To sort n elements, spawn n threads. Each thread sleeps 
for ai seconds, and then places its value at the end of the work-in-progress 
sorted array.



More Meme Sorts!

Stalin Sort: Delete any elements that aren’t in order (send them to the gulag).

Time Sort (Sleep Sort): To sort n elements, spawn n threads. Each thread sleeps 
for ai seconds, and then places its value at the end of the work-in-progress 
sorted array.

Sorting as a Service (SaaS): It’s 2019! Why sort yourself, when you can just 
send all your data to a sketchy API and have them sort it for you?



Problems! (Courtesy of Sherry)

++


