Graphs

Arvind Ramaswami

Outline

- What is a graph?
- Properties of graphs
- Graph algorithms
- Well-known graph problems
- Problem set

What is a graph?

- A collection of vertices and edges $G(V, E)$

Why graphs?

- Show relationships between different entities (e.g. people)

Other applications

- Neural networks (machine learning)

Definitions

- The degree of a vertex $\mathrm{v} \in \mathrm{V}$ is the number of vertices that are incident to v .
- Cycle
- Tree

Graph Algorithms - Short Cycle Decompositions

- Can we find an upper bound the length of the smallest cycle in a graph?
- Create an algorithm to decompose a general graph into $\mathrm{O}(\mathrm{n})$ edges and cycles of length at $\mathrm{O}(\log \mathrm{n})$, and analyze the running time.

Give an $O\left(m \log ^{\wedge} 3 n\right)$ time or faster algorithm for finding short cycle decompositions of length $O(\log n)$.

Well-known problems

Graph isomorphism problem

State-of-the-art algorithms have complexity $\exp \left(\mathrm{n}^{\wedge}\{1 / 2\}+\mathrm{O}(1)\right)$-- Babai 1983
Open problems:

- Can the exponent of n be reduced? (less than $1 / 2$)
- can this be done in polynomial time?

Well-known problems

Traveling salesman problem
How do you compute the shortest path to visit all states?

Topic in graph theory: Shortest-path and applications in graph algorithms

- Can we find an upper bound the length of the smallest cycle in a graph?
- Create an algorithm to decompose a graph into edges and cycles of length at $\mathrm{O}(\log \mathrm{n})$, and analyze the running time.

Exercise: Any undirected graph with minimum degree at least 3 has a cycle of length at most log n , and such a cycle can be found in $\mathrm{O}(\mathrm{m})$ time.

References

Richard Peng CS7510 Webpage (Graph algorithms)

Olympiad Combinatorics by Pranav Sriram: Chapter 7

Conferences:

STOC, SODA, WADS

