1. Problem 1. Suppose you are given a linear program

$$
\begin{gathered}
\max c^{T} x \\
A x \leq b \\
x \geq 0
\end{gathered}
$$

And you know that x and y are primal and dual optimal. Then show that for any i either $(A x)_{i}=b_{i}$ or $y_{i}=0$.
2. Problem 2. Let \mathcal{P} be a polytope. Then recall that a point v is a vertex if we have that whenever $v=\frac{1}{2}(x+y)$ with $x, y \in \mathcal{P}$ then $x=y=v$. Prove that every polytope has a vertex.
(Hint: Consider the point $x \in \mathcal{P}$ that maximizes $\|x\|$.)
3. Problem 3. For any polytope \mathcal{P}, prove the value of $c^{T} x$ is maximized on a vertex. (Note: there can be many points where the maximum point is achieved but at least 1 is a vertex solution.)
4. Problem 4. Consider a polytope given by $\mathcal{P}=\{x: A x \leq b, x \geq 0\} \subset \mathbb{R}^{d}$. Prove that if x is a vertex of the polytope then we must have that at least d of the equations $A x \leq b$ and $x \geq 0$ must hold with equality.
5. Problem 5. Prove that if the value of primal LP is unbounded then dual LP is unfeasible.
6. Problem 6. Formulate the following as an LP

$$
\begin{gathered}
\max \left|c^{T} x\right| \\
A x \leq b \\
x \geq 0
\end{gathered}
$$

7. Problem 7. Formulate the following as an linear program.

$$
\begin{gathered}
\min \|A x-b\|_{1} \\
\|x\|_{\infty} \leq 1
\end{gathered}
$$

where $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$ and $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
(Source: http://www.seas.ucla.edu/ vandenbe/ee236a/homework/problems.pdf)
8. Problem 8. Consider the fractional vertex cover problem for a graph $G=(V, E)$:

$$
\begin{gathered}
\min _{v \in V} x_{v} \\
\forall(u, v) \in E: x_{u}+x_{v} \geq 1 \\
x_{v} \geq 0
\end{gathered}
$$

Prove that there exists a half-integral optimal solution $x \in\{0,1 / 2,1\}^{|V|}$.
9. Problem 9. Extend the approximation algorithm given for vertex cover to one for a weighted vertex cover. That is for positive costs c_{v} find an approximate solution to:

$$
\begin{gathered}
\sum_{v \in V} c_{v} x_{v} \\
\forall(u, v) \in E: x_{u}+x_{v} \geq 1 \\
x_{v} \in\{0,1\}
\end{gathered}
$$

