Big-O Theory Club

The fun is theoretical, but the science is real! ...wait

THEORY CLUB

QUANTUM COMPUTING ALGORITHMS

ES\&T L1175: 02/27 @6PM with DEVON INGRAM

THEORY CLUB

ELLIPTIC CURVE GRYPTOGRAPHY

ES\&T L1175: 04/03 @6PM with PROFESSOR MATTHEW BAKER

THEORY CLUB

SPRINGTIME PROBLEM SESSION

CCB 102: 03/26 @6PM with SHYAMAL PATEL

THEORY CluB

SYNCHRONOUS
 AKA HEORY CLUB ELECTIONS

CCB 022.04123@6PM with
DIPIEDIP DEB

General Information

General Meetings

- Professor Talks
- Student Talks
- Problem

Sessions every 5-
ish weeks

- ARC speakers
- Proof based
- No coding

Goal of Meetings

- See theory CS outside the GT curriculum
- Show what our faculty are researching
- Everyone leaves understanding something

Prerequisites

- Meetings are proof based
- You don't need to be good at proofs or math to come to our meetings - you just have to be interested!

Officers

President

Alvin Chu
Talks Coordinator

Neil Thistlewaite

 Vice President

Atul Merchia
Workshops Coordinator

Tentative Schedule for Upcoming Meetings

Variant of Nim

Rules:

- Start with n paper clips
- Player 1 can pick up to at most $\mathrm{n}-1$ paper clips
- The players alternate and can take up to at most 2 times the number taken in the previous turn
- Goal: Take the last paper clip

You try!

Solution

The losing positions are the Fibonacci numbers
F_n = 1, 1, 2, 3, 5, 8, 13, 21
20 -> 14 -> 13

- The winning strategy: found using the Zeckendorf decomposition* of n (using the greedy algorithm)
- Remove the smallest part of the decomposition
$13+5+2=21$
$14=13+1$ => remove 1
*Zeckendorf decomposition: representation of an integer as a sum of nonconsecutive Fibonacci numbers

Why is it the Fibonacci Numbers?

-Lemma: 2 * F_i < F_\{i + 2\}
-This implies that...
-removing the smallest Zeckendorf part will never allow the other player to remove the next smallest Zeckendorf part
-For example,
$-19=13+5+1$
-The first player removes 1 paper clip.
-The next player is forced to play the losing position of 5 paper clips!
-The second player starts the game of 5 paper clips (and inevitably loses). That means he/she has to start the next losing position of 13 paper clips!
-And Player 2 loses!!
So does Player 1 always win?
$19=13+5+1$
Remove 1: 18=13+5
P2 Remove 2: $16=13+3$
Remove 3: 13
P2

Another game

- Two playing a game on a circular table.

Each turn:

- Each player places a penny on the table such that none of it hangs off the table, and none overlaps with an existing penny.
- A player loses if unable to place a penny on

Who has the winning strategy?

An Introduction to CS Theory

What Questions Does CS Theory Consider?

Algorithms

- How fast can you compute the volume of a shape?
- How can you quickly compute a close to optimal route to visit a set of cities?
- How can you quickly sample a random schedule?
- Given a black boxfunction, how many values do you need to know to be reasonably convinced that it is linear (or close to linear)?

Limits of Computation

- How many comparisons do you need to sort a list?
- Suppose you and a friend are given numbers, how many bits do you need to exchange to know if they are the same?
- Does randomness allow us to compute functions faster?
- Suppose we know that a solving a problem takes a long time, what other problems does this imply are slow?

What tools are used?

- Discrete Math:
- Combinatorics
- Graph Theory
- Continuous Math
- Geometry and Calculus
- Linear Algebra
- Algorithmic Ideas:
- Binary Search
- Data Structures
- Dynamic Programming

Open Problems

Open Problem 1

Open Problem 2

- All Pairs Shortest Paths
- $P=N P ?$
- Sum of Square Roots
- Given a list of integers x_{1}, x_{2}, \ldots, x_{n} and k can you determine if
$\sqrt{x}_{1}+\sqrt{x}_{2} \cdots \sqrt{x}_{n} \leq k$?
- Can this be done in polynomial time?
- Given a weighted graph $G=(V, E, w)$ does there exist a truly subcubic algorithm to find the distance between every pair of vertices?

Open Problem 3

- For any problem whose solution can be checked in polynomial time, can we compute its solution in polynomial time?
- NP = RP? (recent paper refuted within 3
hours: https://arxiv.org/a bs/2008.00601)

