Graphs and Algorithms

Alvin Chiu

Big 0 Theory Club

What is a Graph?

- In discrete math, a graph is a collection of vertices and edges.
- An edge connects two vertices.

Examples of Graphs

Road map across the US

Social Network

How do we describe a graph?

Computer sees:

Edge List

- a: b, c
- b: a, c
- c: a, b, d
- d: c

We see:

Adjacency Matrix

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	1	0
\mathbf{b}	1	0	1	0
\mathbf{c}	1	1	0	1
\mathbf{d}	0	0	1	0

Properties of Graphs

- The degree of a vertex is the number of edges containing that vertex.
- Degree of \mathbf{a} is 2 , since (a, b) and (a, c) are edges.
- A path is a sequence of distinct vertices where there is an edge between every two consecutive vertices in the sequence.

- A cycle is a path that ends where it starts.
- Cycle of 3: (a, b, c)
- The distance between two vertices is the length of the shortest path between them.
- Length of a path = number of edges it contains

"First Theorem of Graph Theory"

Theorem: In a graph G, the sum of the degrees of the vertices is equal to twice the number of edges.

Proof:

"First Theorem of Graph Theory" Proof

Theorem: In a graph G, the sum of the degrees of the vertices is equal to twice the number of edges.

Proof: Let our graph G have m edges and n vertices $v_{1}, v_{2}, \ldots, v_{n}$ We have that:

$$
\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 m
$$

On the left we sum each edge twice, because an edge $\left(v_{i}, v_{j}\right)$ is counted in the degree of v_{i} and v_{j}.

Graph Isomorphism Example

- Two graphs G and H are isomorphic if there exists a mapping f between the vertices of G and H such that the edges are preserved.
Graph G Graph H

Graph Isomorphism Example

- Which of these four graphs are isomorphic? Why or why not?
- Hint: Graph invariants!

Graph Isomorphism Problem

- Given two finite graphs G and H with n vertices, determine if G and H are isomorphic.
- Brute force algorithm: runtime of $O\left(n!n^{2}\right)$
- Open problem: Can this problem be solved in polynomial time?
- Currently not known to be P or NP-Complete

Graph Isomorphism Problem

- Given two finite graphs G and H with n vertices, determine if G and H are isomorphic.
- Brute force algorithm: runtime of $O\left(n!n^{2}\right)$
- Open problem: Can this problem be solved in polynomial time?
- Currently not known to be P or NP-Complete

