
Graphs and Algorithms

Alvin Chiu

Big O Theory Club

What is a Graph?

- In discrete math, a graph is a collection of vertices and edges.
- An edge connects two vertices.

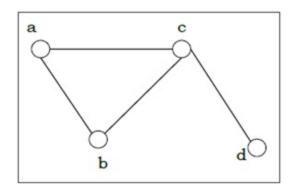
Examples of Graphs

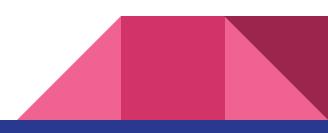
Road map across the US

Social Network

How do we describe a graph?

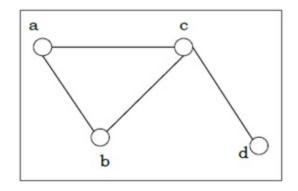
Computer sees:

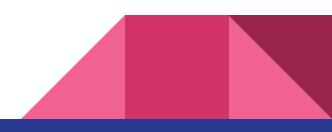

Edge List


Adjacency Matrix

- a: b, c
- b: a, c
- c: a, b, d
- d: c

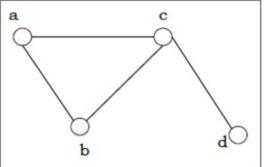
	а	b	С	d
а	0	1	1	0
b	1	0	1	0
С	1	1	0	1
d	0	0	1	0


We see:



Properties of Graphs

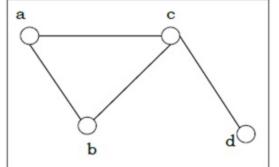
- The **degree** of a vertex is the number of edges containing that vertex.
 - Degree of **a** is 2, since (a,b) and (a,c) are edges.
- A **path** is a sequence of distinct vertices where there is an edge between every two consecutive vertices in the sequence.
- A **cycle** is a path that ends where it starts.
 - Cycle of 3: (a, b, c)
- The **distance** between two vertices is the length of the shortest path between them.
 - Length of a path = number of edges it contains



"First Theorem of Graph Theory"

Theorem: In a graph *G*, the sum of the degrees of the vertices is equal to twice the number of edges.

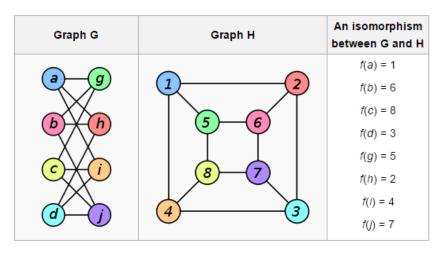
Proof:

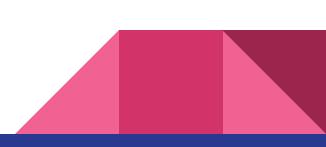


"First Theorem of Graph Theory" Proof

Theorem: In a graph *G*, the sum of the degrees of the vertices is equal to twice the number of edges.

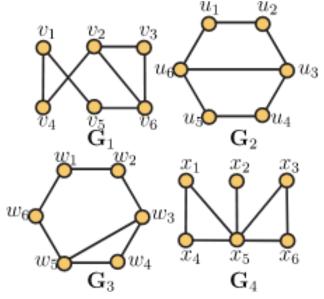
Proof: Let our graph **G** have **m** edges and **n** vertices v_1, v_2, \ldots, v_n We have that:

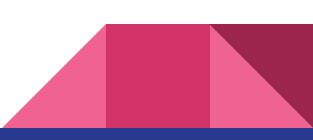

$$\sum_{i=1}^{n} \deg(v_i) = 2m$$



On the left we sum each edge twice, because an edge (v_i, v_j) is counted in the degree of v_i and v_j .

Graph Isomorphism Example


• Two graphs *G* and *H* are **isomorphic** if there exists a mapping *f* between the vertices of *G* and *H* such that the edges are preserved.



Graph Isomorphism Example

- Which of these four graphs are isomorphic? Why or why not?
- Hint: Graph invariants!

Graph Isomorphism Problem

- Given two finite graphs *G* and *H* with *n* vertices, determine if *G* and *H* are isomorphic.
- Brute force algorithm: runtime of $O(n!n^2)$
- **Open problem:** Can this problem be solved in polynomial time?
 - Currently not known to be P or NP-Complete

Graph Isomorphism Problem

- Given two finite graphs *G* and *H* with *n* vertices, determine if *G* and *H* are isomorphic.
- Brute force algorithm: runtime of $O(n!n^2)$
- **Open problem:** Can this problem be solved in polynomial time?
 - Currently not known to be P or NP-Complete

