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Symmetric LU decomposition

M = LU where L is lower triangular and U is upper triangular
Not always possible, need PLU in general!

Special case for symmetric matrices

Theorem

If M = M" and det(M) # 0, then M = LDL" where L is from
the LU decomposition of M and D is the diagonal of U.

Proof sketch.

(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M " = (LDK) = (LDK)". From
matrix multiplication, able to see K = LT, Ol



Cholesky factorization

Let M be (symmetric) positive definite, that is,
(x,Mz) = (Mz,z) >0 for all z € R".

Then M = LDL" becomes LLT,
M =LDL" = L(VDVD)L" = (LVD)(LVD)" = L'L'"
for L' .= L\/D and (\/5)” =+/D; ;.

This is the Cholesky factorization!



Why should we care?

© = LL", L has N columns, s non-zero entries per column
Lv and L™'v both cost O(N's) floating-point operations

® Matrix-vector product Ov — L(Lv)
® N? 5 Ns

* Solving linear system ©~'v — L~ (L~ tv)
® N®* - Ns

® Log determinant logdet © — 2logdet L = 2 Zfil log L; ;
°* N* = N

® Sampling from © ~ N (,0) — 2 ~ N(0,ld),z = Lz + p
® 77?7 » Ns

Here, we care about its statistical interpretation



Schur complement

Block © = (61’1 @1’2> then perform a step of Gaussian elimination

©2,1 O22
O1,1 O1,2
0 )
Denote the term in , the of © on Oy 1, as

o Id 0\ (611 0 Id ©,10:,
~\©.,,0,] Id 0 0 Id ’

so we see the Cholesky factorization of © is

B Id 0 [chol(©1,) 0
chol(0) = ((—)2_1(—)1_{ Id)( 0 chol( )>'

Recursing on both diagonal blocks finishes the construction.



Determinant of a block matrix

O11 O12
O=(b 2n
<@2,1 @2,2>
det(©) = det(O1,1) det(O22) — det(O2,1) det(O1,2)7 wrong!

= det(@Ll@Q’Q — @271@172)? wrong!

Schur complement gives proper answer

o—( ' 0\ (6 0 Id ©,16,
~\0,:077 Id 0 0 Id

det(©) = det(O1,1) det ( )



Submatrix of inverse

©11 O12
@ — ) )
(@2,1 @2,2>
(0 o2 =7

G wrong!

Schur complement to the rescue again!



Proper Submatrix of Inverse

Recall the factorization of © as
Id 0\ /011 0 Id ©,16:12
02107 Id 0 0 Id '
Inverting both sides of the equation, 7! is
ld —0,10,,) (611 0 Id 0
0 Id 0 —0,:07; Id

- @;H(@;}@l.g) (@2_1@;{) ~(611012)

So (©71)55 can be read off as @2 o = = (O2911)7"



Leaving linear algebra...

Is the Schur complement symmetric positive definite (s.p.d.)?
® Have been assuming so throughout

Is Schur complementing transitive?
® j.e. suppose we have © blocked as

11 BO12 O3
O= (031 O3z O33
O37 O32 O33

® Is © complemented on ©;,; and then on O35 the same as ©

complemented on (g; g;z )? Intuitively yes, but tedious

Intuitive and economic proofs from statistical perspective



Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

z ~ N, 0°)

1 1 (ez—pw?
2

m(x) = e 2 o

V2ro?

(alternative) Defining property: completely determined by
mean and variance, all higher-order cumulants zero.

We're going to extend this to higher dimensions. Consider

where x (“variables”) is a N x 1 vector, p (“mean vector”) is a
N x 1 vector, and ¥ (“covariance matrix") is a N x N matrix



Defining everything

Naturally,

pi = Elz;]
p = E[x]
¥ j = Cov|z;, z;]
= E[(z; — Elzi])(z; — Elx;])]

—El(@ - u)(@—p) ]

Two natural questions from here.

1. What is the probability density function (PDF) m(x)?
2. How can we sample from = ~ N (s, X)?



A technical path

Recall moment/cumulant generating functions

Mx (€) = Elexp(¢Ta)]
Kx () = log Mx (€)

One characterization: multivariate Gaussian has

M) = exp(€Tn+ € 07¢)
Kol€) =€ n+€ 07

Invert the integral transformation to recover PDF

Instead: exploit moment matching and independence



|dentity covariance

If X has the simplest structure possible, it's trivial:

zn~ N(O, |dN)
Z3 I'I\SJ ./\/(0, 1)
N
fz)=1] 1)
=1
N i
= H e 271
i=1 V2m
L )
(2m)N
1 1,7



Moment matching

Generalize to arbitrary ¥ by moment matching

z ~N(0,ldy)
r=Lz+pn
Elz] =E[Lz+ pu] = LE[z]+ p=p
Cov(z] = E[(z — E[z])(z — E[z])']
=E[Lz(Lz)"]
=E[Lzz L]
=LE[zz"]LT
=LLT
sox ~N(u,LLT). We want & ~ N(, %), so & = LLT.



Sampling with Cholesky Factorization

As we just saw, we can sample & ~ N(u, X)) by instead
sampling z ~ NV(0,Iy) and computing € = Lz + p.

Since LLT = ¥, a natural pick is L = chol(X).

Why is ¥ s.p.d.? Because it's a covariance/Gram matrix.

S=E[(z—p)(z—p)
y' Sy=y Ellz—p)(z—ply
=Ely' (z —p)(z—p)'y|
[(z—p)'y) (- p) 'y
(@~ p) " yl? >0



Pushforward

Integrate against test function v

B0 o) = [[boT)@ )z = [ v(@) Tin(e)de
with change of variables = T'(z) and pushforward

Tyn = (no T_l) ‘det VT_1’
Therefore we have
B0 o] = [ w@) Tae)de = [ v(e) n(e)de = E,(0

if and only if Tyn = =.



PDF from transport

m(2) )y
Expanding det(L )f(L o w),
1 -1
det(L)f(L ()
1 1 3L @) T (L (z—p))

~ det(L) /2m)N
Since LLT =%, det(X) = det(L )2

_ ! oL@ LTI @)
2m)N det(2)
_ 1 o b @) T @)

2m)N det (%)



Summary

Compare PDFs of multivariate normal and scalar normal:

x ~ N(p, %)
f(z) = ! 3@ = @p)
(2m)N det(X)
Compare to scalar:
z~ N(p,0%)
1 1 (e—p)?
T) = e 2 o2
f(z) s

Remarkable similarity!



Cholesky factorization for Gaussians

Sampling: « = Lz + p, matrix-vector product, O(Ns)

(Log)-likelihood computation:

(@—p)' SN @—p)=(x—p) L L (x—p)
= (L@ —p) L (@ —p)
=[IL7 (= - p)?

Back-substitution, O(N's)



Closure of multivariate Gaussians

Many statistical operations preserve distribution
Affine transformation

Joint distribution & marginalization:

1~ N(pi,211)
xo ~ N (2, ¥22)

T 131 Y11 Y12
()~ () (2 52))

Conditioning



Conditioning

Assume p = 0 and use precision instead of covariance!

Q=x"1= (Ql,l Q1,2>

Q2,1 Q272
m(x | 1) = (x| ®2)7(@2) _ (21, 22)
m(x1) (1)

x (X1, T2)
x e_%:E;QQ,Q:UQ_(QZlfBl)TwQ
o | Tl ~N (—Q£%Q2,1m1>Q£5>
If w#0, shift x* = — p, E[lz*] =0
x|y ~ N (,UQ - Qg_éQz,l(wl - H1)7Q2_é)



Conditioning with Schur Complements

@2 | @1 ~ N (p2 — Q3 Qa1 (1 — 1), Q)

w1 (Qu Q2
== _(Qm Q22>

_ (21_11 + (37 1) (212 (27 S12)
N - (2212T11>
Qyp = (22_21\1)_1 = Y1
=Ygy — L0121 T
Q2 Q1 = —oon (Vg B T
=-S5
xy |y ~ N (uz + 22121_11(:1:1 — 1), Yoo — 22121_11212)



Statistical Interpretation

From conditioning,

x| 1~ N (1o + Y012 (@1 — ) )
Schur complement <= conditional covariance!
s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
m((z1 | 22) | 23) = 7(21 | 72, 23)

Conditioning in covariance <= marginalization in precision
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