Huan

Information Theory

Stephen Huan!

LGeorgia Institute of Technology

January 20, 2023




Entropy
m Definitions



Entropy, Intuitively
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Let h(x) be some measure of the “uncertainty” or
“surprise”’ of event x. What are its properties?

m If p(x) =1, then there's no uncertainty — h(x) =0

m If p(x) < p(y), then h(x) > h(y) — if x is rarer than y,
then it is more surprising, so it has higher information

m Finally, if x and y are independent, their information
should just add — h(xy) = h(x) + h(y)
m h(x) looks like log x




Proof of the Form of h(x)

h(xy) = h(x) + h(y) definition

yh (xy) = H'(x) taking 8(1
xyh” (xy) + H(xy) =0 taking 88)/
uh"(u) + K (u) =0 letting u = xy
uf'(u) + f(u) =0 letting f(u) = A (u)




Solving the Differential Equation
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Finishing up h(x)
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f(x) = k% = H(x)

h(x):k/idx:klnx—i-C
but we know h(xy) = h(x) + h(y), so
C=0
and x < y implies h(x) > h(y) so
k<0
| h(x) = —kInx]|

m k corresponds to the base of the logarithm
m We'll take base e (natural log) for simplicity
m The units are known as “nats”, if base 2 is used, "bits”




Expected value of h(x) — Entropy!
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m Suppose X is a random variable

m The expected amount of information it takes to encode X
will be simply the expected value of h(x):

[HIX] = E[- In(p(X))] |
==Y p(x) In(p(x))

xeX

m H[X] is known as the entropy of X. This seems like a
natural way to encode the “uncertainty” of a ran cy
variable, but how precise is this definition? @




Heuristical Justification of Entropy
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m The derivation provided earlier seems a bit . .. handwavy

m Luckily, we can sometimes ignore how we got to something
and simply prove that it makes sense
m Induction
m Solving differential and recurrence relations by guessing
m etc.

m Valid strategy in math when intuition hard to justify a priori




Justification of Expectation
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m Expectation: E[X] = > _x x p(x)
m Frequentist justification: discrete random variable with
values xi ...Xx,, probabilities p; ... p,.
m Run limy_, trials, see p;N of x;
m Average value § 37, xi(piN)
m YLy xipi = 2 X p(x)
m Doesn't really work with continuous!

m Made rigorous with strong law of large numbers

ooo




Strong Justification of Entropy
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m Entropy H[X] lower bound on the (average) number of bits
to encode a random variable X [noiseless coding theorem|

m This is quite a strong claim!

m Proved by Shannon, along with many other
information-theoretic concepts




Entropy

Coding Example

m Coding Example



Entropy Coding Example
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m Discrete uniform distribution on 8 states

mf(x) =% H[X]=-8(}log, ) =3

m Non-uniform distribution { %, %, %, %, %, &, &, &

H[X] = — Z p(xi) loga p(xi)
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Better than Uniform with Optimal Coding
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27478716’ 64’ 64’ 64’ 64
Use coding with length “proportional” to probability
0, 10, 110, 1110, 111100, 111101, 111110, 111111

Valid code: no code is a prefix of any other (need to be
able to uniquely distinguish in a concatenated sequence)

Length of each code is precisely log, p(x;)

Expected length also 2 bits!

In general, Huffman coding to generate optimal codes




Entropy

Physical Entropy

m Physical Entropy



Statistical Mechanics Perspective of Entropy
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m N objects placed into bins, the ith bin can have n; objects
(>_; ni = N). | think physicists call these “microstates’”.

Physical Entropy m The number of ways W to do this is just combinatorial

m Place your objects in a line. Take the first n; as bin 1, next
ny as bin 2, and so on. N! ways to order N objects, but we

don’t care about order within a bin so divide by each n;!

s W = M [ think physicists call this the “macrostate”.

- It
= Amount of entropy H = & W (normalized uncertaint

m Take limy_ o H




Statistical Mechanics, Continued
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N! :
W = definition of W
BRYmCRlIERT oY Hi n,'!
1 .
H = N In W definition of H
—[In (N1) ZIn(n,')] expanding

From Stirling's apprOX|mat|on nl~nlnn—n
N

1
= N[NInN— N — Z(n;ln ni — nj)]
i=1




Statistical Mechanics, Continued
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N
H:Ii/[NInN—N—;(n,-Inn,-—n,-)]

Physical Entropy

N
= %[NInN—Z(n;In n;)] from Zn,- =N
i=1 i
ARS
= —Z—(n;lnn;— niIn N)
=N
N n;
= _;(N)In<N>
N
=—> pilnp;
i=1




Statistical Mechanics, Conclusion

Physical Entropy
H=- E pi In p;
1 1

m Thermodynamic entropy S = kIn W equivalent to
information-theoretic entropy!




Entropy

m Differential Entropy



Differential Entropy
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m Want to generalize entropy to continuous random variable
a Recall: H[X] = E[ In(p(X))] = — X,cx P(X) In p(X)

= Why not H[X] = E[-In(p(X))] = — [ p(X) In p(X)

m Yes, this quantity is known as differential entropy

m But there is a very important caveat we're missing by
being cavalier about replacing sums with integrals

m We'll have to actually work through the derivation!




Differential Entropy Derivation
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Divide X into bins of width A
Need to assign every element that falls into bin / to x;

S Find x; such that p(x;) equals probability of bin i

Mean value theorem guarantees there exists x; such that

(i+1)A
[ b= st

m Given these x;, have discrete distribution with values x; and
corresponding probabilities p(x;)A

Compute entropy of this discrete distribution as lima_,q




Differential Entropy, Continued
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Ha == p(xi)AlIn(p(x;)A)
expanding from In, using >, p(x;) = 1

= _ Zp(x,-)A Inp(x;) —In A

Jim Ha = lim [— Z p(x;)In p(x;)A —In A
Ha = —/p(x) Inp(x) dx+ (—InA)
~—~

~
discretized entropy differential entropy infinite bits




Differential Entropy, Commentary

Huan m So, our differential entropy is the entropy of the binned
discrete distribution as the discretization gets arbitrarily
precise, minus infinite information

m Intuitively, this makes sense, because it takes infinite bits
to specify an arbitrary real number

Differential
Entropy

m The fact that we need to subtract infinite bits makes
differential entropy less intuitive than its discrete
counterpart, for example, it can be negative

m It still has some useful properties though — if one
quantizes a continuous random variable X to n digits, the
cost to encode it will be (approximately) H[X] + n

m It's also useful to define the upcoming KL divergence,
which will help quantify the difference between distributions




Entropy

m Special Densities



Entropy of a Uniform Random Variable

m Now that we've defined both discrete and differential
entropy, we can apply them to some simple distributions
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m Discrete uniform on 0,1,..., N — 1 (location doesn't
matter, entropy determined by distribution)

m Density f(x) = &

HIX] = = 3 plx) I p(x)

1 1

=InN

m Recall N is the number of states,
so this entropy is always positive
(N>1 = InN>0)




Entropy of a Continuous Uniform
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= Uniform on [0, N, density f(x) = &
H[X] = —/p(X)lnp(X) dx

N
11
= — —l —
/O Ny
—InN

m However, a continuous distribution can have N < 1

m So differential entropy can be negative!




Entropy of a Multivariate Gaussian

m Recall a multivariate Gaussian X ~ N (u, X) has density
f(x) = 1 e_(x_“)'l'z—l(x_”)
2m)" =

HIX] = — E[ln p(X)]

=—Ew(9;ggﬁ>—§u—ufz*u—un

1 1
5 In(27) + 5 logdet ¥ + 5 El(x — p) "2 Y(x — )]



Entropy of a Multivariate Gaussian
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Abusing the fact that the trace of a scalar is a scalar,
El(x — 1) "= (x — )] = Eltrace ((x — 1) =7 (x — )]

Using the cyclic property of trace,

= E[trace (z—l(x —p)(x — N)T)]
Swapping expectation and trace by linearity of expectation,

= trace(E [Z_l(x ~p)(x — M)T})
Bringing out ¥~ since it is constant,

— trace(Z L E [(x —w)(x— H)T})
Here we recognize the covariance marix of X

= trace(X 1Y) = trace(/,) = n




Entropy of Multivariate Gaussian
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HX] = %(nln(27r) +logdet ¥ + E[(x — 1) = (x — p)])

1
= E(n In(27) + logdet X + n)

HIX] = g|n<27re|2|%)

m For the case of 1D, the entropy reduces to
1
~In(2meo?
5 n(2mrec?)

m This will again be negative if 02 < ?le




Perplexity
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m The perplexity of a random variable is 2"

m Entropy is measured in bits (base 2) here




KL Divergence
m Definitions



Cross-Entropy
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m The cross-entropy between distributions p and g is the
expected number of bits it takes to specify a sample from
p given an (optimal) coding scheme from g

m Coding scheme: a way to encode a sequence as 1's and 0's




KL Divergence

m Kullback-Leibler Divergence (KL Divergence)
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