Huar

Entropy Definitions Coding Example Physical Entrop Differential Entropy Special Densitie

KL Divergence Definitions

References

Information Theory

Stephen Huan¹

¹Georgia Institute of Technology

January 20, 2023

Table of Contents

Huan

Entropy Definitions

Coding Example Physical Entropy Differential Entropy Special Densitie

KL Divergence Definitions

References

EntropyDefinitions

- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities

2 KL DivergenceDefinitions

Entropy, Intuitively

Huan

Entropy Definitions

- Coding Example Physical Entrop Differential Entropy
- KL Divergence
- References

- Let h(x) be some measure of the "uncertainty" or "surprise" of event x. What are its properties?
- If p(x) = 1, then there's no uncertainty h(x) = 0
- If p(x) < p(y), then h(x) > h(y) if x is rarer than y, then it is more surprising, so it has higher information
- Finally, if x and y are independent, their information should just add h(xy) = h(x) + h(y)
- h(x) looks like log x

Proof of the Form of h(x)

Huar

Entropy Definitions

Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

$$h(xy) = h(x) + h(y) \quad \text{definition}$$

$$yh'(xy) = h'(x) \quad \text{taking } \frac{\partial}{\partial x}$$

$$xyh''(xy) + h'(xy) = 0 \quad \text{taking } \frac{\partial}{\partial y}$$

$$uh''(u) + h'(u) = 0 \quad \text{letting } u = xy$$

$$uf'(u) + f(u) = 0 \quad \text{letting } f(u) = h'(u)$$

Solving the Differential Equation

Huar

Entropy Definitions

Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

$$u\frac{du}{df} + f = 0$$
$$u \, df = -f \, du$$
$$\frac{1}{f} df = -\frac{1}{u} du$$
$$\frac{1}{f} \frac{df}{du} = -\frac{1}{u}$$
$$\int \frac{1}{f} \left(\frac{df}{du}\right) \, du = -\int \frac{1}{u} \, du$$
$$\ln|f| = -\ln|u| + k$$
$$f(u) = k\frac{1}{u}$$

Finishing up h(x)

Huan

Entropy Definitions

Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

$$f(x) = k\frac{1}{x} = h'(x)$$

$$h(x) = k\int \frac{1}{x} dx = k \ln x + 0$$
but we know $h(xy) = h(x) + h(y)$, so
$$C = 0$$
and $x < y$ implies $h(x) > h(y)$ so
$$k < 0$$

$$h(x) = -k \ln x$$

- *k* corresponds to the *base* of the logarithm
- We'll take base e (natural log) for simplicity
- The units are known as "nats", if base 2 is used, "bits"

Expected value of h(x) — Entropy!

Huan

Entropy Definitions

Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

- Suppose *X* is a random variable
- The expected amount of information it takes to encode X will be simply the expected value of h(x):

$$\frac{\mathsf{H}[X] = \mathsf{E}[-\ln(p(X))]}{= -\sum_{x \in X} p(x) \ln(p(x))}$$

H[X] is known as the *entropy* of X. This seems like a natural way to encode the "uncertainty" of a ranvariable, but how precise is this definition?

Heuristical Justification of Entropy

Huar

Entropy Definitions

- Coding Eva
- Physical Entrop Differential Entropy Special Densitie
- KL Divergence Definitions
- References

- The derivation provided earlier seems a bit ... handwavy
- Luckily, we can sometimes ignore how we got to something and simply prove that it makes sense
 - Induction
 - Solving differential and recurrence relations by guessing
 - etc.
- Valid strategy in math when intuition hard to justify a priori

Justification of Expectation

Huan

Entropy

Definitions

Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

• Expectation: $E[X] = \sum_{x \in X} x p(x)$

- Frequentist justification: discrete random variable with values *x*₁...*x*_n, probabilities *p*₁...*p*_n.
- **Run** $\lim_{N\to\infty}$ trials, see $p_i N$ of x_i
- Average value $\frac{1}{N} \sum_{i=1}^{n} x_i(p_i N)$

$$\sum_{i=1}^n x_i p_i = \sum_x x p(x)$$

- Doesn't really work with continuous!
- Made rigorous with strong law of large numbers

Strong Justification of Entropy

Huan

Entropy Definitions

- Coding Example Physical Entropy Differential Entropy Special Densities
- KL Divergence Definitions
- References

- Entropy H[X] lower bound on the (average) number of bits to encode a random variable X [noiseless coding theorem]
- This is quite a strong claim!
- Proved by Shannon, along with many other information-theoretic concepts

Table of Contents

Huan

- Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities
- KL Divergence Definitions
- References

1 Entropy

- Definitions
- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities
- 2 KL DivergenceDefinitions
- 3 References

Entropy Coding Example

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

- Discrete uniform distribution on 8 states
- $f(x) = \frac{1}{8}$, $H[X] = -8(\frac{1}{8}\log_2\frac{1}{8}) = 3$
- Non-uniform distribution $\left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \right\}$

$$H[X] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

$$= -\left(\frac{1}{2}\log\frac{1}{2} + \frac{1}{4}\log\frac{1}{4} + \frac{1}{8}\log\frac{1}{8} + \frac{1}{16}\log\frac{1}{16} + \frac{1}{64}\log\frac{1}{64} + \frac{1}{64}\log\frac{1}{64} + \frac{1}{64}\log\frac{1}{64} + \frac{1}{64}\log\frac{1}{64}\right)$$
$$= 2$$

= 2

Better than Uniform with Optimal Coding

Huan

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densitier

KL Divergence Definitions

- $\ \ \, \left\{ \ \ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \right\}$
- Use coding with length "proportional" to probability
- 0, 10, 110, 1110, 111100, 111101, 111110, 111111
- Valid code: no code is a prefix of any other (need to be able to uniquely distinguish in a concatenated sequence)
- Length of each code is precisely $\log_2 p(x_i)$
- Expected length also 2 bits!
- In general, *Huffman coding* to generate optimal codes

Table of Contents

Huar

- Entropy Definitions Coding Example **Physical Entropy** Differential Entropy Special Densities
- KL Divergence Definitions
- References

1 Entropy

- Definitions
- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities
- 2 KL DivergenceDefinitions
- 3 References

Statistical Mechanics Perspective of Entropy

Huan

- Entropy Definitions Coding Example **Physical Entropy** Differential Entropy Special Densities
- KL Divergence Definitions
- References

- N objects placed into bins, the *i*th bin can have n_i objects (∑_i n_i = N). I think physicists call these "microstates".
- The number of ways W to do this is just combinatorial
- Place your objects in a line. Take the first n₁ as bin 1, next n₂ as bin 2, and so on. N! ways to order N objects, but we don't care about order within a bin so divide by each n_i!
- $W = \frac{N!}{\prod_i n_i!}$. I think physicists call this the "macrostate".
- Amount of entropy $H = \frac{1}{N}W$ (normalized uncertainty)
- Take $\lim_{N\to\infty} H$

Statistical Mechanics, Continued

Tiuai

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

 $W = \frac{N!}{\prod_{i} n_{i}!}$ definition of W $H = \frac{1}{N} \ln W$ definition of H $= \frac{1}{N} [\ln(N!) - \sum_{i=1}^{N} \ln(n_{i}!)]$ expanding

From Stirling's approximation $n! \sim n \ln n - n$

$$= \frac{1}{N} [N \ln N - N - \sum_{i=1}^{N} (n_i \ln n_i - n_i)]$$

Statistical Mechanics, Continued

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

$$H = \frac{1}{N} [N \ln N - N - \sum_{i=1}^{N} (n_i \ln n_i - n_i)]$$

$$= \frac{1}{N} [N \ln N - \sum_{i=1}^{N} (n_i \ln n_i)] \qquad \text{from } \sum_i n_i = N$$

$$= -\sum_{i=1}^{N} \frac{1}{N} (n_i \ln n_i - n_i \ln N) \qquad \text{from } \sum_i n_i = N$$

$$= -\sum_{i=1}^{N} (\frac{n_i}{N}) \ln \left(\frac{n_i}{N}\right)$$

$$= -\sum_{i=1}^{N} p_i \ln p_i$$

Statistical Mechanics, Conclusion

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

$$H = -\sum_{i=1}^{N} p_i \ln p_i$$
$$= H[X]$$

Thermodynamic entropy S = k ln W equivalent to information-theoretic entropy!

Table of Contents

Huar

- Entropy Definitions Coding Example Physical Entrop Differential Entropy
- KL Divergence Definitions
- References

1 Entropy

- Definitions
- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities
- 2 KL DivergenceDefinitions
- 3 References

Differential Entropy

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy

KL Divergence Definitions

- Want to generalize entropy to continuous random variable
 Recall: H[X] = E[−ln(p(X))] = −∑_{x∈X} p(X) ln p(X)
- Why not $H[X] = E[-\ln(p(X))] = -\int p(X) \ln p(X)$
- Yes, this quantity is known as differential entropy
- But there is a very important *caveat* we're missing by being cavalier about replacing sums with integrals
- We'll have to actually work through the derivation!

Differential Entropy Derivation

Huar

- Entropy Definitions Coding Example Physical Entropy Differential Entropy
- KL Divergence Definitions

- Divide X into bins of width Δ
- Need to assign every element that falls into bin i to x_i
- Find x_i such that $p(x_i)$ equals probability of bin i
- Mean value theorem guarantees there exists x_i such that

$$\int_{i\Delta}^{(i+1)\Delta} p(x) \, dx = p(x_i)\Delta$$

- Given these x_i, have discrete distribution with values x_i and corresponding probabilities p(x_i)Δ
- \blacksquare Compute entropy of this discrete distribution as $\lim_{\Delta \to 0}$

Differential Entropy, Continued

Huan

Entropy Definitions Coding Example Physical Entropy Differential Entropy

KL Divergence _{Definitions}

 $H_{\Delta} = -\sum_{i} p(x_i) \Delta \ln(p(x_i) \Delta)$ expanding from In, using $\sum_{i} p(x_i) = 1$ $= -\sum p(x_i)\Delta \ln p(x_i) - \ln \Delta$ $\lim_{\Delta \to 0} H_{\Delta} = \lim_{\Delta \to 0} \left| -\sum_{i} p(x_i) \ln p(x_i) \Delta - \ln \Delta \right|$ $= -\int p(x)\ln p(x)\,dx + (-\ln\Delta)$ H_{Δ} infinite bits discretized entropy differential entropy

Differential Entropy, Commentary

Huan

Entropy Definitions Coding Example Physical Entropy Differential Entropy

Divergence Definitions

- So, our differential entropy is the entropy of the binned discrete distribution as the discretization gets arbitrarily precise, minus infinite information
- Intuitively, this makes sense, because it takes infinite bits to specify an arbitrary real number
- The fact that we need to subtract infinite bits makes differential entropy less intuitive than its discrete counterpart, for example, it can be negative
- It still has some useful properties though if one quantizes a continuous random variable X to n digits, the cost to encode it will be (approximately) H[X] + n
- It's also useful to define the upcoming KL divergence, which will help quantify the difference between distributions

Table of Contents

Huan

Entropy Definitions Coding Exampl Physical Entrop Differential Entropy

Special Densities

KL Divergence Definitions

References

1 Entropy

- Definitions
- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities

2 KL DivergenceDefinitions

Entropy of a Uniform Random Variable

Huan

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

- Now that we've defined both discrete and differential entropy, we can apply them to some simple distributions
- Discrete uniform on 0, 1, ..., *N* − 1 (location doesn't matter, entropy determined by distribution)
- Density $f(x) = \frac{1}{N}$

$$H[X] = -\sum_{i} p(x_{i}) \ln p(x_{i})$$
$$= -N(\frac{1}{N} \ln \frac{1}{N})$$
$$= \ln N$$

 Recall N is the number of states, so this entropy is always positive (N ≥ 1 ⇒ ln N ≥ 0)

Entropy of a Continuous Uniform

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

Uniform on [0, N], density
$$f(x) = \frac{1}{N}$$

$$H[X] = -\int p(x) \ln p(x) dx$$

$$= -\int_0^N \frac{1}{N} \ln \frac{1}{N} dx$$

$$= \ln N$$

However, a continuous distribution can have N < 1So differential entropy can be negative!

Entropy of a Multivariate Gaussian

Huar

Entropy Definitions Coding Exan Physical Ent

- Differential Entropy Special Densities
- KL Divergence Definitions
- References

• Recall a multivariate Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$ has density $f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-(\mathbf{x}-\mu)^\top \Sigma^{-1}(\mathbf{x}-\mu)}$

$$\begin{split} \mathsf{H}[X] &= -\,\mathsf{E}[\ln\rho(X)] \\ &= -\,\mathsf{E}[\ln\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\frac{1}{|\Sigma|^{\frac{1}{2}}}\right) - \frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})] \\ &= \frac{n}{2}\ln(2\pi) + \frac{1}{2}\operatorname{logdet}\Sigma + \frac{1}{2}\,\mathsf{E}[(\mathbf{x}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})] \end{split}$$

Entropy of a Multivariate Gaussian

Huan

Entropy

Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions Abusing the fact that the trace of a scalar is a scalar,

$$\mathsf{E}[(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})] = \mathsf{E}[\mathsf{trace}\left((\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)]$$

Using the cyclic property of trace,

$$= \mathsf{E}[\mathsf{trace}\left(\Sigma^{-1}(\pmb{x}-\pmb{\mu})(\pmb{x}-\pmb{\mu})^{\top}\right)]$$

Swapping expectation and trace by linearity of expectation, = trace($E\left[\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\right]$)

Bringing out Σ^{-1} since it is constant,

$$= \mathsf{trace}(\Sigma^{-1} \,\mathsf{E}\left[(\pmb{x} - \pmb{\mu})(\pmb{x} - \pmb{\mu})^\top\right])$$

Here we recognize the covariance marix of X

$$= { t trace}(\Sigma^{-1}\Sigma) = { t trace}(I_n) = n$$

Entropy of Multivariate Gaussian

1

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

$$H[X] = \frac{1}{2}(n \ln(2\pi) + \operatorname{logdet} \Sigma + E[(\mathbf{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})])$$

= $\frac{1}{2}(n \ln(2\pi) + \operatorname{logdet} \Sigma + n)$
$$H[X] = \frac{n}{2} \ln(2\pi e |\Sigma|^{\frac{1}{n}})$$

For the case of 1D, the entropy reduces to

$$\frac{1}{2}\ln\left(2\pi e\sigma^2\right)$$

 \blacksquare This will again be negative if $\sigma^2 < \frac{1}{2\pi e}$

Perplexity

Huar

Entropy Definitions Coding Example Physical Entropy Differential Entropy Special Densities

KL Divergence Definitions

References

The *perplexity* of a random variable is 2^{H[x]}
Entropy is measured in bits (base 2) here

Table of Contents

Huan

Entropy Definitions Coding Example Physical Entrop Differential Entropy Special Densitie

KL Divergence Definitions

Entropy

- Definitions
- Coding Example
- Physical Entropy
- Differential Entropy
- Special Densities

2 KL DivergenceDefinitions

Cross-Entropy

Huar

Entropy

Coding Example Physical Entropy Differential Entropy Special Densitie:

KL Divergence Definitions References

- The cross-entropy between distributions p and q is the expected number of bits it takes to specify a sample from p given an (optimal) coding scheme from q
- Coding scheme: a way to encode a sequence as 1's and 0's

KL Divergence

Huar

Entropy Definitions Coding Example Physical Entrop Differential Entropy Spacial Densitie

KL Divergence Definitions

Kullback-Leibler Divergence (KL Divergence)

Conditional Entropy

Huan
Coung-Example
Physical Entropy
плузіса спору
Special Densities
KL .
Diversion
Divergence
Definitions
References

Mutual Information

 -		n

Entropy Definitions Coding Exampl Physical Entrop Differential Entropy Special Densiti

KL Divergence Definitions

References

Huar

Entropy

Definitions Coding Example Physical Entropy Differential Entropy Special Densitie

KL Divergence Definitions

References

1 Pattern Recognition and Machine Learning, Bishop

- 2 Probabilistic Machine Learning: An Introduction, Murphy
- **3** ECE 587 / STA 563: Lecture 7 Differential Entropy
- Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
- 5 Wikipedia on entropy