Theory Club: Fun with Probability

Neil Thistlethwaite

6 August 2021

These notes are provided as-is! They are not intended to be comprehensive, and I haven't checked over them carefully.

How do we think about things with uncertain outcomes? Random variables. That is, variables that take on different values according to the outcome of some event. By convention, use capitals for random variables and lowercase for "normal" variables. For example,

$$
X \triangleq \text { number on top after rolling a } 6 \text {-sided die }
$$

Then, we need to be able to say what distribution X comes from, which we can do in a few ways. Since X is a discrete random variable, meaning it only takes on a few different values, we can do this with a probability mass function, or pmf. For example,

$$
f(x)= \begin{cases}1 / 6 & \text { if } x \in\{1,2,3,4,5,6\} \\ 0 & \text { otherwise }\end{cases}
$$

This is a function that, given the outcome, tells us how likely it is for the random variable to take on that value. For example, $f(3)=1 / 6$, meaning there's a $1 / 6$ chance that $X=3$. Somewhat more formally, $\mathrm{P}(X=x)=f(x)$.

Note that any manipulations we do with X will themselves be random variables. For example, $3+X$ is also a random variable. $X=4$ is a special kind of random variable, called an "event", meaning it has a binary outcome (either it happens or it doesn't). The notation $\mathrm{P}(A)$ is usually reserved for events, and means "the probability of event A happening", but sometimes people abuse it to really mean $\mathrm{P}(A=a)$, or "the distribution of A ".

The most important concept in probability is that of expectation, or expected value, which provides us a tool to say something about the "average" value of a random variable. For discrete random variables, it's defined like this:

$$
\mathbb{E}[X]=\sum_{x} x \cdot \mathrm{P}(X=x)
$$

Here's one use of expectation: suppose I say that I'll play a game with you where I'll let you roll a 6 -sided die, and I'll pay you in $\$$ the number that shows up on top. How much would you pay (as an entry fee) to play this game? (Try computing $\mathbb{E} X$). How about a version of the game where I pay you the number that shows up on top squared?

Here are some important properties of expectation:

$$
\text { Linearity of expectation: } \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Monotonicity: If $\mathrm{P}(X \leq Y)=1$, and $\mathbb{E}[X], \mathbb{E}[Y]$ exist, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
Non-multiplicativity: In general, $\mathbb{E}[X Y] \neq \mathbb{E}[X] \mathbb{E}[Y]$
Non-degeneracy: If $\mathbb{E}[|X|]=0$, then $\mathrm{P}(X=0)=1$
Another important concept of probability is independence, which I won't go too much into here. Basically, two random variables are independent if and only if $\mathrm{P}(X=x, Y=y)=$ $\mathrm{P}(X=x) \mathrm{P}(Y=y)$. Examples of events that are independent: the results of two separate coin flips or die rolls. Examples of events that are dependent: the first roll of a die and the sum of the first two rolls, whether it rains today and whether it rains tomorrow.

If two events are independent, you can do a lot of things, but one of the nice things about expectation is that you can use linearity of expectation on random variables that aren't necessarily independent! Here's some problems that you can solve with expectation:

Problem 1. There are k people in a lift at the ground floor. Each wants to get off at a random floor of one of the n upper floors. What is the expected number of lift stops (i.e., total number of distinct floors chosen by the k people)?

Problem 2. Suppose I want to go on a random walk. I start at $x=0$, and each minute, I randomly move in either the +1 direction or the -1 direction. After t minutes, what's the average location I'll be in? What's the average distance I'll be away?

Problem 3. I have a randomized algorithm that succeeds with some probability $p \in(0,1)$, and distinct runs of the algorithm are independent. Fortunately, I can easily check if the algorithm succeeded. If I can only run it n times, what's the probability it will fail? On average, how many runs will it take me to succeed?

