
Introduction to Machine Learning Theory

Diptodip Deb
March 6, 2017

Theory Club, Georgia Tech

Overview
What is Machine Learning?
Bayesian Learning

MAP

ML

MDL

Bayesian Optimal
Computational Learning Theory

PAC Learning

Sample Complexity for Finite Hypothesis Spaces

VC Dimension
The Wondrous World of High Dimensionality

k-Means Clustering

Spectral Clustering
1

What is Machine Learning?

General Definitions

• Figures out a program from data

2

General Definitions

• Figures out a program from data
• Can do this automatically

3

General Definitions

• Figures out a program from data
• Can do this automatically
• Can do this even if it is too complex for a human to do so

4

Three Categories of ML

Supervised
Learning
What we call
function
approximation,
y = f(x).

Unsupervised
Learning
What we call data
description, or
clustering data.

Reinforcement
Learning
Learning optimal
(ish) policies –
often with just a
reward function
and no model!

5

What This Talk Is/Isn’t

We’re going to focus on supervised learning for the majority of
this talk. At the end (if time permits), we will discuss the
challenge of high dimensionality and some basic unsupervised
learning techniques (brought to you by linear algebra!).

We are not going to be discussing specific algorithms for
machine learning (except [maybe] the two at the end) and
some toy benchmark algorithms we use for analysis. We are
also not going to be talking about deep learning (neural
networks) too much (because there’s not much we can prove
about them).

6

Formalizing Machine Learning

Definitions
We say a machine learns on task T if its performance P
improves with experience E.

We restrict ourselves to binary classification tasks unless
otherwise noted. Note also that we typically talk about our
data existing in some instance space X.

7

Formalizing Machine Learning

Definition
We define the true concept c(x) : X→ {0, 1} as the absolutely
true classification for some observation/data x ∈ X.

8

Formalizing Machine Learning

Definition
We define a hypothesis h(x) : X→ {0, 1} as the learner’s
classification for some observation/data x ∈ X.

Definition
We define the hypothesis space H as the set of all possible
functions that the learner could output. Note that the true
concept need not necessarily be in this hypothesis space
(though ideally it will be).

9

Formalizing Machine Learning

Definition
We define a consistent hypothesis as one that classifies all of
the given training data D ⊆ X correctly.

10

Formalizing Machine Learning

Definition
We define the version space VSH,D as the space of hypothesis
in some given H that are consistent with some given set of
data D.

11

Bayesian Learning

Why Bayesian?

A Bayesian outlook lets us quantitatively weigh evidence for
hypotheses to choose the best one. It also lets us design
algorithms that manipulate probability distributions (which
are useful for benchmarks) as well as analyze algorithms that
do not explicitly manipulate probability distributions (i.e.
many popular algorithms).

12

Characteristics of Bayesian Learning

• Each new observation can change the estimated
likelihood of some hypothesis being correct.

13

Characteristics of Bayesian Learning

• Each new observation can change the estimated
likelihood of some hypothesis being correct.

• On that note, Bayesian Learning allows for probabilities of
correctness, rather than hard elimination of inconsistent
learners.

14

Characteristics of Bayesian Learning

• Each new observation can change the estimated
likelihood of some hypothesis being correct.

• On that note, Bayesian Learning allows for probabilities of
correctness, rather than hard elimination of inconsistent
learners.

• Because we take a Bayesian (as opposed to frequentist)
viewpoint, we can incorporate prior information (domain
knowledge) into our learning.

15

Characteristics of Bayesian Learning

• Each new observation can change the estimated
likelihood of some hypothesis being correct.

• On that note, Bayesian Learning allows for probabilities of
correctness, rather than hard elimination of inconsistent
learners.

• Because we take a Bayesian (as opposed to frequentist)
viewpoint, we can incorporate prior information (domain
knowledge) into our learning.

• Toy Bayesian learners can often provide useful
benchmarks to compare results of (often more practical)
algorithms.

16

The Bayesian Learning Problem

Problem Statement
Given some observations D ⊆ X over some instance space X
and some hypothesis space H, pick the hypothesis h ∈ H which
maximizes P(h|D), i.e. find the optimal hypothesis
h∗ = argmaxhP(h|D).

17

The Bayesian Learning Problem

Problem Statement
Given some observations D ⊆ X over some instance space X
and some hypothesis space H, pick the hypothesis h ∈ H which
maximizes P(h|D), i.e. find the optimal hypothesis
h∗ = argmaxhP(h|D).

What do we know from Bayes’ Rule?

18

Bayesian Learning

MAP

MAP (maximum a posteriori) Hypothesis

Definition
We define

hMAP = argmaxhP(h|D) = argmaxh
P(D|h)P(h)

P(D) .

This lends itself to an obvious brute-force MAP algorithm.

19

Small Results of MAP

Assumptions

• The data is not noisy (i.e. ∀i : c(xi) = di).
• The true concept is contained in the hypothesis space,
c ∈ H.

• We have no a priori bias towards any hypothesis (all h ∈ H
are equally likely without looking at data).

20

Small Results of MAP

If we have no a priori bias, what is P(h) for any h ∈ H?

21

Small Results of MAP

P(h) = 1
|H|

22

Small Results of MAP

If we have no noise in our data, what shall we make P(D|h)?

23

Small Results of MAP

P(D|h) =

1 if h(xi) = di for all di in D
0 otherwise

24

Small Results of MAP

Considering the previous results, what can we determine
about P(h|D)?

25

Small Results of MAP

Clearly, if h is inconsistent, we have that P(h|D) = 0.

What if we have a consistent h?

26

Small Results of MAP

P(h|D) = P(D|h)P(h)
P(D) (1)

=

1
|H|(1)
|VSH,D|
|H|

(2)

=
1

|VSH,D|
(3)

27

Small Results of MAP

In summary, we found that

P(h|D) =

 1
|VSH,D| if h(xi) = di for all di in D

0 otherwise

28

MAP Evolution

0 2 4 6 80

0.2

0.4

0.6

0.8

1

29

MAP Evolution

0 2 4 6 80

0.2

0.4

0.6

0.8

1

30

MAP Evolution

0 2 4 6 80

0.2

0.4

0.6

0.8

1

31

Bayesian Learning

ML

ML (maximum likelihood) Hypothesis

In the previous analysis, we operated under the assumption
that our prior for hypotheses was P(h) = 1

|H| , i.e. uniform.

32

ML (maximum likelihood) Hypothesis

In the previous analysis, we operated under the assumption
that our prior for hypotheses was P(h) = 1

|H| , i.e. uniform.

This is actually a special case of MAP which we call ML, for
maximum likelihood.

33

ML (maximum likelihood) Hypothesis

We’re going to use ML hypotheses to justify mean squared
error (under certain conditions).

We’re also going to be moving from Boolean functions
(classification) to real-valued functions.

34

ML (maximum likelihood) Hypothesis

We now have some instance space X but with a hypothesis
space H where for any h ∈ H we have h : X→ R. We also
assume that c(x) ∈ H. Given that, we model each data
observation as the following < xi,di >. Each pair represents
the observation (input) xi and the given target value di.

However, di is no longer noise free! We know have that
di = c(xi) + ei where ei is some random error drawn from a
Normal (Gaussian) distribution with 0 mean (µ = 0).

35

Justifying Mean-Squared Error

Assumptions

• Target concept c ∈ H.
• Target concept is deterministic and observations are only
perturbed by some noise.

• Noise is drawn independently and from a Normal
distribution with 0 mean.

• We again have no a priori bias towards any hypotheses.
• The number of examples in our training data is given by m.

36

Justifying Mean-Squared Error

We use the p.d.f. (probability density function) to represent
P(D|h) from now on. This is simply
p(x′) = limϵ→0

1
ϵP(x

′ ≤ x ≤ x′ + ϵ).

37

Justifying Mean-Squared Error

We use the p.d.f. (probability density function) to represent
P(D|h) from now on. This is simply
p(x′) = limϵ→0

1
ϵP(x

′ ≤ x ≤ x′ + ϵ).

Now we have
hML = argmaxhp(D|h).

38

Justifying Mean-Squared Error

Via independence of the errors, we have

hML = argmaxh
m∏
i=1

p(di|h).

39

Justifying Mean-Squared Error

hML = argmaxh
m∏
i=1

p(di|h) (1)

40

Justifying Mean-Squared Error

hML = argmaxh
m∏
i=1

p(di|h) (1)

= argmaxh
m∏
i=1

1√
2πσ2

e−
1

2σ2
(di−µ)2 (2)

41

Justifying Mean-Squared Error

hML = argmaxh
m∏
i=1

p(di|h) (1)

= argmaxh
m∏
i=1

1√
2πσ2

e−
1

2σ2
(di−µ)2 (2)

= argmaxh
m∏
i=1

1√
2πσ2

e−
1

2σ2
(di−h(xi))2 (3)

42

Justifying Mean-Squared Error

hML = argmaxh
m∏
i=1

p(di|h) (1)

= argmaxh
m∏
i=1

1√
2πσ2

e−
1

2σ2
(di−µ)2 (2)

= argmaxh
m∏
i=1

1√
2πσ2

e−
1

2σ2
(di−h(xi))2 (3)

= argmaxh
m∑
i=1

ln 1√
2πσ2

− 1
2σ2 (di − h(xi))2 (4)

43

Justifying Mean-Squared Error

hML = argmaxh
m∑
i=1

− 1
2σ2 (di − h(xi))2 (5)

= argminh
m∑
i=1

1
2σ2 (di − h(xi))2 (6)

= argminh
m∑
i=1

(di − h(xi))2 (7)

44

Error Function for Probabilistic Functions

What if instead of a real-valued function, we returned to the
setting of Boolean functions – but made them
nondeterministic?

We still have c(x) : X→ {0, 1}, but now each xi may now map to
multiple values of {0, 1}. This unpredictability is often because
we do not observe all the necessary features, so some
instances look identical (even though they should not).

45

Error Function for Probabilistic Functions

Usually, in these cases, we want to use a neural network to
learn the probability that some xi will map to 1.

Let us define c′(xi) : X→ [0, 1] which returns the probability
that c(xi) = 1.

46

Error Function for Probabilistic Functions

This time, we won’t assume that anything is fixed. That is, we
assume that both the features that we observe (xi) and the
classifications we receive (di) are random variables.

We still assume independence between samples. What does
this give us?

47

Error Function for Probabilistic Functions

P(D|h) =
m∏
i=1

P(xi,di|h) (1)

48

Error Function for Probabilistic Functions

P(D|h) =
m∏
i=1

P(xi,di|h) (1)

=
m∏
i=1

P(di|h, xi)P(xi) (2)

49

Error Function for Probabilistic Functions

What is the probability of obtaining a di = 1 for some single
event xi, given that hi is true? That is, what is P(di|h, xi)?

50

Error Function for Probabilistic Functions

P(di|h, xi) =

h(xi) if di = 1
(1− h(xi)) otherwise

51

Error Function for Probabilistic Functions

Let’s rewrite that into something we can actually work with.

52

Error Function for Probabilistic Functions

Let’s rewrite that into something we can actually work with.

P(di|h, xi) = h(xi)di(1− h(xi))1−di

53

Error Function for Probabilistic Functions

If we substitute this back into our previous expression for
P(D|h), we have

P(D|h) =
m∏
i=1

h(xi)di(1− h(xi))1−diP(xi).

54

Error Function for Probabilistic Functions

But we want to maximize this, so we stick an argmax in the
front:

hML = argmaxh
m∏
i=1

h(xi)di(1− h(xi))1−diP(xi).

55

Error Function for Probabilistic Functions

Removing constants (in terms of h):

hML = argmaxh
m∏
i=1

h(xi)di(1− h(xi))1−di .

56

Error Function for Probabilistic Functions

We take the log again:

hML = argmaxh
m∑
i=1

di log(h(xi) + (1− di) log(1− h(xi)).

57

Error Function for Probabilistic Functions

Switching max and min, we get cross entropy:

hML = argminh −
m∑
i=1

di log(h(xi) + (1− di) log(1− h(xi)).

58

Error Function for Probabilistic Functions

Switching max and min, we get cross entropy:

hML = argminh −
m∑
i=1

di log(h(xi) + (1− di) log(1− h(xi)).

This connection to entropy seems very suspicious.

59

Bayesian Learning

MDL

Occam’s Razor

“Among competing hypotheses, the one that makes the fewest
assumptions should be selected.”

60

Occam’s Razor

“Among competing hypotheses, the one that makes the fewest
assumptions should be selected.” Alternatively, pick the
shortest hypothesis.

We’ve seen this meme a lot, but it has always seemed wishy
washy.

61

Occam’s Razor

Let’s consider MAP again. We know that

hMAP = argmaxhP(D|h)P(h).

62

Occam’s Razor

Taking the log gives

hMAP = argmaxh logP(D|h) + logP(h).

63

Occam’s Razor

Switching max and min gives

hMAP = argminh − logP(D|h)− logP(h).

64

Occam’s Razor

Rewriting in terms of lengths, we have

hMAP = argminhLCD|h(D|h)− LCh(h).

65

Occam’s Razor

Rewriting in terms of lengths, we have

hMAP = argminhLCD|h(D|h)− LCh(h).

That is, the most likely hypothesis is the one that has the
shortest description!

66

Occam’s Razor

Of course, in reality that’s still not quite true.

67

Bayesian Learning

Bayesian Optimal

Bayesian Optimal Learner

Intuition
Suppose we have H = {h1,h2,h3}. Then, suppose these
hypotheses have posterior probabilities (given training data)
of 0.4, 0.3, 0.3 respectively. Clearly, h1 is our MAP hypothesis. If
we obtain a new instance x which is classified as follows:
h1(x) = 1,h2(x) = 0,h3(x) = 0, what happens?

68

Bayesian Optimal Learner

Intuition
Suppose we have H = {h1,h2,h3}. Then, suppose these
hypotheses have posterior probabilities (given training data)
of 0.4, 0.3, 0.3 respectively. Clearly, h1 is our MAP hypothesis. If
we obtain a new instance x which is classified as follows:
h1(x) = 1,h2(x) = 0,h3(x) = 0, we see that the probability that
x is negative is actually 0. and the probability that it is a
positive instance is actually 0.4. The MAP hypothesis is wrong!

69

Bayesian Optimal Learner

Definition
We define the Bayesian Optimal classification as

argmaxvj∈V
∑
hi∈H

P(vj|hi)P(hi|D).

70

Computational Learning Theory

Visualizing The Classification Problem

71

True Error

The last slide showed our model of what a hypothesis is. We
are easily able to find things such as training error, but what
about the error on the full instance set X?

72

True Error

Definition
We define true error as eD(h) = Px∈D(c(x) ̸= h(x)).

73

True Error

But we can’t observe true error!

We don’t know the underlying distribution (if we did, we would
be done!). All we have are our learning examples D. We focus,
therefore, on “how probable is it that the observed training
error for h ∈ H gives a misleading estimate of eD(h)?”

74

Computational Learning Theory

PAC Learning

Probably Approximately Correct Model

We might try characterizing how many examples we would
need to observe to obtain a true error of 0. After all, the more
data we have, the better. Surely.

75

Probably Approximately Correct Model

Unfortunately, this is impossible.

76

Probably Approximately Correct Model

Unfortunately, this is impossible.

• Without looking at all of X, we might have multiple
consistent hypotheses and no way to pick the target
concept from amongst these.

77

Probably Approximately Correct Model

Unfortunately, this is impossible.

• Without looking at all of X, we might have multiple
consistent hypotheses and no way to pick the target
concept from amongst these.

• Because we choose training examples randomly, there is a
nonzero chance that we get a misleading set of examples.

78

Probably Approximately Correct Model

How can we solve these two problems?

79

Probably Approximately Correct Model

How can we solve these two problems?

First, let’s not require that learner be perfectly accurate. We
say it can have some error ϵ. Second, let’s say that it doesn’t
have to succeed with this error rate all the time (i.e. for any
randomly drawn sequence of examples). It can fail with some
probability δ.

80

Probably Approximately Correct Model

What we have then, is a learner that probably (δ) learns an
approximately correct (ϵ) hypothesis.

81

Probably Approximately Correct Model

Definition
Suppose we have some concept class C over some set of
instances X. We say that this class of concepts C is
PAC-learnable by a learner L with hypothesis space H if for all
c ∈ C, distributions D over X, ϵ such that 0 ≤ ϵ ≤ 1

2 , and δ such
that 0 ≤ δ ≤ 1

2 : L learns with probability 1− δ to output a
hypothesis h ∈ H with true error eD(h) ≤ ϵ in time polynomial
with respect to 1

ϵ ,
1
δ , n, and size(c).

82

Computational Learning Theory

Sample Complexity for Finite Hypothesis
Spaces

Characterizing Sample Complexity Using PAC

How is PAC useful?

83

Characterizing Sample Complexity Using PAC

How is PAC useful?

Recall the definition of version space.

84

Characterizing Sample Complexity Using PAC

S
uppose we have hypothesis space H, target concept c, instance
distribution D and some training examples D. The version
space VSH,D is ϵ− exhausted with respect to c and D if for all
h ∈ VSH,D, we have that eD(h) < ϵ.

85

Characterizing Sample Complexity Using PAC

We fail to ϵ-exhaust a version space if any single hypothesis in
a hypothesis space where all hypotheses have true error
greater than ϵ are consistent with all of the data.

What is the probability that we fail to ϵ-exhaust the version
space?

86

Characterizing Sample Complexity Using PAC

Say we have m independently drawn examples. For any
example, the probability that any single hypothesis succeeds
is at most (1− ϵ) if our hypothesis space only has hypotheses
with true error greater than ϵ.

87

Characterizing Sample Complexity Using PAC

Over m examples, the probability that this bad hypothesis
succeeds on all of them is (1− ϵ)m.

88

Characterizing Sample Complexity Using PAC

Over m examples, the probability that this bad hypothesis
succeeds on all of them is (1− ϵ)m. With k = |H|, we see that
the probability that at least one of these bad hypotheses is
consistent with our training data is k(1− ϵ)m.

89

Characterizing Sample Complexity Using PAC

We know that k ≤ |H|. Therefore, we see that
k(1− ϵ)m ≤ |H|(1− ϵ)m.

90

Characterizing Sample Complexity Using PAC

We know that k ≤ |H|. Therefore, we see that
k(1− ϵ)m ≤ |H|(1− ϵ)m. Because (1− ϵ) ≤ e−ϵ, this expression
is less than or equal to |H|e−ϵm.

91

Characterizing Sample Complexity Using PAC

We recall that we bound this probability of failure by δ. Thus,
we have the probability of failure is less than or equal to the
previous expression which, in turn: |H|e−ϵm ≤ δ.

92

Characterizing Sample Complexity Using PAC

Solving for m gives: m ≥ 1
ϵ(ln|H|+ ln(1δ)).

93

Characterizing Sample Complexity Using PAC

What happens if we have an infinite hypothesis space?

94

Computational Learning Theory

VC Dimension

Our Good Friends Vapnik and Chervonenkis

Definition
We say that a hypothesis space H over instance space X has a
VC-dimension of d if the size of the largest finite subset of X
shattered by H is d.

95

The Wondrous World of High
Dimensionality

Nonintuitivity

When we try to think about learning in higher dimensions, our
intuition often fails us.

96

The Wondrous World of High
Dimensionality

k-Means Clustering

Visualion of k-Means/Clusters

0 2 4 6 8 100

20

40

60

80

100

97

The Wondrous World of High
Dimensionality

Spectral Clustering

98

	What is Machine Learning?
	Bayesian Learning
	MAP
	ML
	MDL
	Bayesian Optimal

	Computational Learning Theory
	PAC Learning
	Sample Complexity for Finite Hypothesis Spaces
	VC Dimension

	The Wondrous World of High Dimensionality
	k-Means Clustering
	Spectral Clustering

