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Abstract
Origami, where two-dimensional sheets are folded into complex structures, is rich

with combinatorial and geometric structure, most of which remains to be fully

understood. In this paper we consider flat origami, where the sheet of material is

folded into a two-dimensional object, and consider the mountain (convex) and

valley (concave) creases that result, called a MV assignment of the crease pattern.

An open problem is to count the number locally valid MV assignments l of a given

flat-foldable crease pattern C, where locally valid means that each vertex will fold

flat under l with no self-intersections of the folded material. In this paper we solve

this problem for a large family of crease patterns by creating a planar graph C�

whose 3-colorings are in one-to-one correspondence with the locally valid MV

assignments of C. This reduces the problem of enumerating locally valid MV

assignments to the enumeration of 3-colorings of graphs.
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1 Introduction

Origami is the art of folding, allowing the transformation of flat pieces of paper, or

any flat material, into two- or three-dimensional shapes. Enumerating the different

ways to fold a flat sheet along straight crease lines into a flat object is an intriguing,

open problem with applications in math, physics, and engineering [2, 5, 6].

Whenever paper is folded flat, the resulting straight line of the fold is a crease.
An origami crease pattern (C, P) is a straight-line embedding of a planar graph

C ¼ ðVðCÞ;EðCÞÞ on a region P of R2, where the edges of C are the creases of the

folded paper. Here we assume that P is bounded and the graph C is finite. Unless the

shape of P is important we will refer to a crease pattern as just C. Giving the paper

an arbitrary ‘‘top’’ and ‘‘bottom’’ when folding along the creases, each crease will

either be a mountain crease (it bends the paper in a convex direction) or valley
crease (it bends the paper in a concave direction). Thus, the flat-folded state of the

paper is a mountain-valley (MV) assignment on C, which is a function

l : EðCÞ ! f�1; 1g, where lðcÞ ¼ 1 if the crease c is a mountain crease and

lðcÞ ¼ �1 if it is a valley crease.

We call an MV assignment l valid if it can be used to physically fold (C, P) flat
such that the model could be pressed between the pages of a book with no self

intersections or new creases being made. A crease pattern C is (globally) flat-
foldable if there exists a valid MV assignment l on C. This notion of global flat-

foldability tells us if it is possible to fold the paper flat using all of the creases in the

crease pattern. Enumerating all globally valid MV assignments l on a given flat-

foldable origami crease pattern C with multiple vertices is an open problem [7]. Just

determining the global flat-foldability of a specific MV assignment is a difficult

problem since the size of the faces in a crease pattern dictates whether or not the

layers of the paper will collide. In fact, global flat-foldability has been proven to be

NP-hard [3], even for simplified crease patterns [1]. This means that the global flat-

foldability enumeration problem is ]P-complete, or at least NP-hard, and thus is

quite hard to solve exactly. We will focus specifically on MV assignments that are

locally valid, meaning every vertex in the set V(C) is valid individually. We call a

crease pattern C locally flat-foldable if there exists a locally valid MV assignment l
on C.

By definition, a single-vertex crease pattern is globally flat-foldable if and only if

it is locally flat-foldable. In fact, there is a linear-time algorithm for determining the

number of valid MV assignments given any single-vertex crease pattern [4, 9].

However, computing the number of locally valid MV assignments for general crease

patterns with many vertices is open. A significant advance in this area was given by

Ginepro and Hull in [7], where the number of locally valid MV assignments of the

m� n Miura-ori crease pattern (see Fig. 1) was shown to be equal to the number of

proper 3-vertex colorings of an m� n grid graph with one vertex pre-colored.

In this paper, we expand the 3-coloring result to a wide class of flat-foldable

crease patterns. Specifically, if C is a flat-foldable crease pattern where each vertex

satisfies a recursive constraint we call 3-nice (defined in Sect. 2), then we can find a

corresponding graph C� such that the number of locally valid MV assignments of
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C equals the number of proper 3-colorings, with one vertex pre-colored, of C�. As a
consequence, we prove that several families of crease patterns have the same

number of locally valid MV assignments as the m� n Miura-ori. Further, the 3-nice

property includes all degree-4 flat-foldable vertices, implying that this color

correspondence works for all 4-regular crease patterns. This allows us to reduce our

enumeration problem into the more extensively-studied problem of enumerating

graph colorings. It also provides very strong evidence that the combinatorial

structure underlying locally valid MV assignments is 3-colorings of graphs.

2 Background and Notation

For background on flat-foldable crease patterns see [1, 7–9]. We summarize here

three main conditions that a single-vertex crease pattern must satisfy in order to fold

flat as well as a recursive algorithm for folding such vertices.

Theorem 1 (Kawasaki [9]) Let (C, P) be an origami crease pattern where C has
only one vertex v in the interior of P and all edges in C are adjacent to v. Let
a1; . . .; ak be the sector angles, in order, between the consecutive edges around v.
Then the crease pattern (C,P) is flat-foldable if and only if k = 2n is even and

a1 � a2 þ a3 � � � � � a2n ¼ 0:

In this paper, we only investigate crease patterns which can fold flat, making

satisfying Kawasaki’s Theorem a precondition for all crease patterns considered.

The next theorems describe conditions that must be satisfied for a particular

single-vertex MV assignment to fold flat. These are central to the goal of

enumerating all locally valid MV assignments. The first, Maekawa’s Theorem,

states that the difference between the number of mountain and valley creases as a

flat-foldable vertex must be two.

Theorem 2 (Maekawa [9]) Let v be a vertex in a flat-foldable crease pattern C with
a valid MV assignment l and let E(v) be the set of crease edges adjacent to v. Then

(a) (b)

Fig. 1 a The Miura-ori crease pattern, with a locally valid MV assignment. b A grid graph superimposed
with the bijection scheme illustrated
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X

c2EðvÞ
lðcÞ ¼ �2:

In flat origami, the Big-Little-Big Theorem states that if a flat-foldable vertex has

a sector angle ai that is strictly smaller than its two neighboring angles ai�1 and aiþ1,

then the creases surrounding ai cannot be both mountains or both valleys in any

valid MV assignment (otherwise the two large angles would totally cover ai on the

same side of the paper, causing a self-intersection). We will need the following

generalization of this given in [8, 9].

Theorem 3 (Big-Little-Big) Let v be a vertex in a flat-foldable crease pattern
C with an MV assignment l. Suppose that we have a local minimum of consecutive
equal sector angles ai between the crease edges ci; . . .; ciþkþ1 at v. That is, ai ¼
aiþ1 ¼ � � � ¼ aiþk where ai�1 [ ai and aiþkþ1 [ ai. Then l is valid among the
creases bordering the angles ai; � � � ; aiþk if and only if

Xiþkþ1

j¼i

lðciÞ ¼
0 if k is even,

�1 if k is odd.

�

Therefore, if there are an even number of small equal angles in a row, the number

of mountains and number of valleys bordering those small equal angles must differ

by 1. If there is an odd number of small equal angles in a row, there must be the

same number of mountains and valleys.

Using Theorem 3, one can create a recursive algorithm to count the number of

valid MV assignments of a flat-foldable single-vertex crease pattern [9]. Since the

nature of this recursion is important in what follows, we outline the algorithm here.

Let C0 be our single-vertex, flat-foldable crease pattern, and identify a local

minimum of consecutive equal sector angles ai; . . .; aiþk as per the Big-Little-Big

Theorem. Fold the creases surrounding these angles and fuse the layers of paper

together to get a new crease pattern C1 with fewer creases. (Note that C1 will now

be a crease pattern on a cone-shaped piece of paper, but as detailed in [8, 9] these

single-vertex flat-foldability results, like the Big-Little-Big Theorem, apply to

crease patterns on cones as well as flat paper, so the recursion can proceed.) We then

repeat, finding a local minimum of consecutive equal sector angles of C1 and fold

them to obtain crease pattern C2. We proceed in this way until a crease pattern Cz is

obtained where the sector angles are all equal, in which case any MV assignment

that satisfies Maekawa’s Theorem will suffice. Each recursive step allows us to

count how many MV assignments will satisfy the application of the Big-Little-Big

Theorem, and in this way we can count the number of valid MV assignments in

linear time.

We define a single-vertex, flat-foldable crease pattern C to be m-nice if every

application of the Big-Little-Big Theorem in its folding recursion with

ai ¼ � � � ¼ aiþk, ai�1 [ ai, and aiþkþ1 [ ai, we have k þ 1�m. Note that the
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definition of m-nice does not apply to vertices where all the sector angles are equal.

As we will see in Sect. 3, requiring the vertices in our flat-foldable crease patterns to

be 3-nice will be necessary for some of our work.

These background results give us a set of conditions by which local flat-

foldability is dictated. They allow us to understand and find all valid MV

assignments for any single-vertex crease pattern. Our goal now is to find the number

of all locally valid MV assignments for an arbitrary flat-foldable crease pattern C. If
we letM(C) be the set of all locally valid MV assignments l on C, our goal is to find
jMðCÞj.

To do so, we build off of the work of Ginepro and Hull [7], which looked at local

flat-foldability for the Miura-ori crease pattern. In particular, they found a bijection

between M(C), where C is a Miura-ori crease pattern made of an m� n array of

parallelograms and SðC�Þ, the set of proper 3-vertex colorings of an m� n grid

graph C� with one vertex pre-colored. If we overlay C� on top of C then we can

demonstrate the bijection by following a zig-zag path through C�, as shown in

Fig. 1a. The colors used are the elements of Z3, and if we pre-color the upper-left

vertex with 0, then as we follow the zig-zag path we add 1 (mod 3) to get the next

color if we cross a mountain crease and subtract 1 if we cross a valley crease. For a

proof that this is in fact a bijection, see [7].

In generalizing this idea, we first establish some notation. Let a proper 3-coloring

of a graph G ¼ ðV;EÞ with one vertex pre-colored be s : V ! Z3, where sðuÞ 6¼
sðvÞ whenever fu; vg is an edge and, arbitrarily, sðv0Þ ¼ 0. We denote the set of all

such proper 3-colorings s of a graph G as S(G).
To count locally valid MV assignments of a flat-foldable crease pattern (C, P) we

want to find a graph C�, which we will call the SAW graph of C, such that there is a

bijection f : MðCÞ ! SðC�Þ that maps locally valid MV assignments of C to proper

3-colorings with one vertex pre-colored of graph C�. To create a (useful) bijection,

we want to embed our desired graph C� onto the paper P and direct some (or

perhaps all) of the edges in C� satisfying the following conditions:

• Each face in C contains at least one vertex v 2 VðC�Þ in our embedding.

• For all creases ci 2 EðCÞ bordering faces Fi and Fiþ1 in (C, P), there must exist

two vertices vi; viþ1 2 VðC�Þ embedded in P so that vi 2 Fi, viþ1 2 Fiþ1, and

either ðvi; viþ1Þ or ðviþ1; viÞ is a directed edge in EðC�Þ crossing crease ci.
• If ðvi; vjÞ is a directed edge in EðC�Þ that crosses crease ci 2 EðCÞ, then

lðciÞ ¼
1 if sðvjÞ � sðviÞ � 1 ðmod 3Þ
�1 if sðvjÞ � sðviÞ � 2 ðmod 3Þ

�

The conditions governing directed edges yield a mapping from any proper

3-coloring to a (hopefully valid) MV assignment and vice versa.

For example, the m� n grid graph in Fig. 1 serves as the SAW graph of the

m� n Miura-ori tessellation, as proved in [7].
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Note that the directed edges in C� might not span all of VðC�Þ. In order for there

to be a bijection fromM(C) to SðC�Þ, the vertices colored by the directed edges must

force one and only one proper coloring on the remaining vertices.

In the case where C is a single-vertex crease pattern, we will impose an

additional condition that in the embedding of C� on the paper P, all the directed

edges of C� will border the outside face of C�. For this reason, we will refer to a

directed edge in a single-vertex SAW graph C� as a boundary edge. (This will be
useful in Sect. 4 when we tile single-vertex SAW graphs to make SAW graphs for

larger crease patterns.) Therefore, when we color only the vertices on boundary

edges of a single-vertex SAW graph C�, this has to determine a unique proper

3-coloring of C� by forcing a coloring on any interior vertices.

We proceed by finding SAW graphs for single-vertex crease patterns.

3 Coloring Bijections for Single-Vertex Folds

Degree-4 single vertex crease patterns come in three types, shown in Fig. 2. The so-

called bird’s foot (Fig. 2a) is made of two congruent acute and two congruent

obtuse angles; it is the vertex used in the Miura-ori crease pattern. If the vertex has

one smallest sector angle, then we call it a Big-Little-Big (or BLB for short) vertex

(Fig. 2b). The last case is where all the sector angles equal 90	 (Fig. 2c). As shown
in [8, 9], degree-4 BLB vertices have 4 valid MV assignments, bird’s feet have 6,

and the all-equal-angles vertex has 8. That is, jMðCÞj ¼ 4, 6, and 8 for these

vertices, respectively.

Theorem 4 The graphs shown in Fig. 4 are SAW graphs for the three types of
degree-4 single vertex crease patterns.

Proof That Fig. 2a is a SAW graph for the bird’s foot vertex was proven in [7], but

we describe the proof here for completeness. The SAW graph C� in this case is a

4-cycle, which has 18 ways to properly 3-color the vertices, and thus 6 ways to

3-color with one vertex pre-colored, i.e., jSðC�Þj ¼ 6. Therefore to show that the

function f : MðCÞ ! SðC�Þ given by the directed edges shown in Fig. 2a is a

bijection, we only need to establish surjectivity. The Big-Little-Big Theorem,

(a) (b) (c)c0
c0 c0

c1

c1

c1

c2 c2
c2

c3

c3

c3

v0
v0

v0

v1
v1

v1v2 v2
v2

v3
v3

v3

v4 v4

v5

v6

Fig. 2 a SAW graph for a degree-4 Miura-ori vertex (the so-called bird’s foot). b SAW graph for a
degree-4, Big-Little-Big vertex. c SAW graph for a degree-4 vertex with all 90	 angles
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together with Maekawa’s Theorem, tells us that in order for a bird’s foot MV

assignment l to be valid, it needs have lðc3Þ (the ‘‘heel’’ of the bird’s foot) equal the
majority assignment of the ‘‘toes’’, which is lðc0Þ þ lðc1Þ þ lðc2Þ. If we pick an

arbitrary s 2 SðC�Þ, then, following the directed edges in Fig. 2a, let lðciÞ ¼
sðviÞ � sðvi�1Þ for i ¼ 0; 1; 2, where the indices are taken mod 3, and let

lðc3Þ ¼ sðv2Þ � sðv3Þ. Then

lðc0Þ þ lðc1Þ þ lðc2Þ ¼sðv0Þ � sðv3Þ þ sðv1Þ � sðv0Þ þ sðv2Þ � sðv1Þ
¼sðv2Þ � sðv3Þ ¼ lðc3Þ:

Therefore we have found a valid MV assignment l with f ðlÞ ¼ s, as desired.
For the BLB crease pattern C and graph C� shown in Fig. 2b, we have that

jMðCÞj ¼ 4 because we must have lðc2Þ 6¼ lðc3Þ by Big-Little-Big (giving us that

ðlðc2Þ; lðc3ÞÞ is either ð�1; 1Þ or ð1;�1Þ) and thus lðc0Þ and lðc1Þ must be the

same in order to satisfy Maekawa’s Theorem (giving us two choices for

lðc0Þ ¼ lðc1Þ). We also have jSðC�Þj ¼ 4; if we pre-color sðv1Þ ¼ 0, then the two

triangles force sðv3Þ ¼ 0, and then we have two coloring choices for the vertex set

fv2; v4g and two choices for v0. To show surjectivity of the map f : MðCÞ ! SðC�Þ
given by the directed edges shown, we may assume sðv1Þ ¼ sðv3Þ ¼ 0 for all s 2
SðC�Þ (making v1 our pre-colored vertex). Then the color sðv2Þ will determine

whether ðlðc2Þ; lðc3ÞÞ ¼ ð�1; 1Þ or ð1;�1Þ. Then the color sðv0Þ will make either

lðc0Þ ¼ lðc1Þ be �1 or 1. All options result in a valid MV assignment l.
For the all-equal-angles degree-4 case of Fig. 2c, we know that jMðCÞj ¼ 8 and it

is not hard to check that jSðC�Þj ¼ 8 as well. Now let s 2 SðC�Þ with sðv0Þ ¼ 0. We

will show that the MV assignment l given by the directed edges in Fig. 2c will

satisfy Maekawa’s Theorem and thus be valid. Suppose that sðv0Þ ¼ sðv2Þ. Then
lðc1Þ 6¼ lðc2Þ. Now, if sðv6Þ ¼ 1 then sðv3Þ ¼ 2 is forced by sðv0Þ ¼ 0, and we have

lðc0Þ ¼ lðc3Þ ¼ 1. Otherwise sðv6Þ ¼ 2 and sðv3Þ ¼ 1, which means

lðc0Þ ¼ lðc3Þ ¼ �1. Both cases satisfy Maekawa’s Theorem. On the other hand, if

sðv0Þ 6¼ sðv2Þ then we must have sðv4Þ ¼ sðv0Þ and lðc1Þ ¼ lðc2Þ. Then, if sðv5Þ ¼
1 we have sðv3Þ ¼ 2 and sðv2Þ ¼ 0, making lðc0Þ 6¼ lðc3Þ, whereas if sðv5Þ ¼ 2

we’ll also get lðc0Þ 6¼ lðc3Þ. This covers all cases of colorings s 2 SðC�Þ, and we

have that C� is a SAW graph for C. h

Remark 1 Note that when it comes to counting MV assignments, we only care

about the number of 3-colorings (with one vertex pre-colored) of the SAW graph.

The directed edges only describe how to biject a given MV assignment to a specific

3-coloring.

In fact, the directed edges shown in Fig. 2 are not the only ones that can be used

to perform the bijections for degree-4 flat-foldable vertices. For the bird’s foot, we

may reverse all the directed edges and the bijection proof will still work. For the

BLB degree-4 vertex, we may reverse the directed edges along the 3-cycles (edges

ðv3; v2Þ and ðv2; v1Þ) or we may reverse the other pair of directed edges (ðv1; v0Þ and
ðv3; v0Þ) and the proof will still work. For the all-equal-angles degree-4 vertex, there

are several variations of directed edges that will work. I.e., if we only switch the

directed edges ðv1; v0Þ and ðv3; v0Þ, or if we only switch the edges ðv1; v0Þ and
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ðv6; v3Þ, then one may check that our bijection proof can still be made to work.

These alternate directed edge assignments are useful for tiling these SAW graphs in

larger degree-4 crease patterns, as we will see in Sect. 4.

It is more complicated to find SAW graphs for higher-degree flat-foldable

vertices, mainly because of the many different ways the Big-Little-Big Theorem can

be applied recursively when the vertex degree becomes large. Nonetheless, we can

design SAW graphs for flat-foldable vertices that are 3-nice. To see this, we begin

with a lemma.

Lemma 1 (Baby SAW graphs) Let Gk be the creases c1; . . .; ckþ1 surrounding a
local minimum of k consecutive equal sector angles a1; . . .; ak in a single-verex, flat-
foldable crease pattern. Then for k ¼ 1; 2; 3 the graphs G�

k shown in Fig. 3 are SAW
graphs for the creases Gk, which we refer to as baby SAW graphs.

Proof Using the notation shown in Fig. 3, we consider cases based on k.
Case 1 : k ¼ 1: The proof of this is the same as in the BLB degree-4 case: We can

note that if s 2 SðG�
1Þ with sðw0Þ ¼ 0 and l is an MV assignment based on

s determined by the directed edges in G�
1, then sðw2Þ ¼ sðw0Þ,

sðw1Þ ¼ sðw1Þ þ lðc1Þ, and sðw2Þ ¼ sðw0Þ þ lðc1Þ þ lðc2Þ, which implies that

lðc1Þ 6¼ lðc2Þ. This gives us exactly the valid MV assignments of G1 according to

the Big-Little-Big Theorem, establishing the bijection between MðG1Þ and SðG�
1Þ.

Case 2 : k ¼ 2: This proof is equivalent to the bird’s foot degree-4 vertex: Letting
sðw0Þ ¼ 0, we have sðw3Þ ¼ sðw0Þ þ lðc1Þ þ lðc2Þ þ lðc3Þ. Since sðw0Þ 6¼ sðw3Þ,
lðc1Þ þ lðc2Þ þ lðc3Þ ¼ �1. This ensures the validity of MV assignments l on G2

given by the directed edges and a proper 3-coloring of G�
2 by the Big-Little-Big

Theorem.

Case 3 : k ¼ 3: Here we have three equal angles in a row, and the Big-Little-Big

Theorem says that any MV assignment l will be valid among these creases if and

only if
P4

i¼1 lðciÞ ¼ 0, meaning jMðG3Þj ¼
4

2

� �
¼ 6. The graph G�

3 in Fig. 3 has,

if we pre-color sðw0Þ ¼ 0, two choices for 3-coloring w1, which then forces the

colors of w5 and w4. Then if sðw2Þ ¼ sðw4Þ we have 2 color choices for w3, and if

α0 α1

α2

α0 α1
α2

α3

α0 α1
α2
α3

α4

w0

w1

w0

w0

w1

w1

w2

w2

w2

w3

w3

w3

w4

w5

c0 c0
c0c1 c1

c1

c2

c2

c3

c3 c4

c2

c3

c4

c5

G1 G2 G3

G∗
2 G∗

3

G∗
1

Fig. 3 The baby SAW graphs for a local minimum of one, two, or three equal angles
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sðw2Þ 6¼ sðw4Þ then there is only 1 choice for w3. Thus SðG�
3Þ ¼ 2ð2þ 1Þ ¼ 6. Then,

any coloring s 2 SðG�
3Þ has sðw0Þ ¼ sðw4Þ and by the directed edges,

sðw4Þ ¼ sðw0Þ þ lðc1Þ þ lðc2Þ þ lðc3Þ þ lðc4Þ, which implies
P4

i¼1 lðciÞ ¼ 0.

Thus the MV assignment generated by a coloring s 2 SðG�
3Þ and the directed edges

will be valid, and thus our map f : MðG3Þ ! SðG�
3Þ is a bijection. h

Using Lemma 1, we can construct SAW graphs for any flat-foldable vertex that

is 3-nice.

Theorem 5 For any 3-nice, single-vertex, flat-foldable crease pattern C, there
exists a SAW graph C�.

Proof Let C ¼ C0 be an arbitrary 3-nice vertex of degree 2n. We proceed by

induction on n.
For the base case, a flat-foldable vertex of degree 2 is just two creases that make

sector angles of 180	 with each other. (Such a vertex makes a straight line crease

and can be thought of as degenerate, but it still satisfies Kawasaki’s and Maekawa’s

Theorems.) Its SAW graph is just two vertices fv0; v1g connected by an edge, as in

Fig. 4 left. If v0 is pre-colored, then the directed edge ðv0; v1Þ will act to form the

bijection with the two MV assignments of the vertex.

Figure 4 also illustrates the basic idea of how the induction proceeds: A local

minimum of consecutive equal sector angles of C0 are located and folded to make a

smaller crease pattern C1, which by induction has a SAW graph C�
1. We then use

graph operations to modify C�
1 into a SAW graph for C0. In Fig. 4 we see how the

BLB degree-4 vertex SAW graph is a modification of the base case SAW graph,

where a vertex and edge have been split and the baby SAW graph G�
1 inserted.

n = 1

n = 2

n = 2

n = 3

G∗
1

G∗
3

G∗
2

Fig. 4 Example of the base case where n ¼ 1, with graph operations to define the next SAW graphs
where k ¼ 1; 2, and 3
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Similarly, inserting the baby SAW graph G�
3 gives a degree-6 vertex. Also in Fig. 4

we see how the bird’s foot SAW graph is a different modification of the base case.

To make this more formal, let ci; . . .; ciþk be a sequence of creases in C0 that have

a local minimum of consecutive equal sector angles ai ¼ . . . ¼ aiþk�1 between them

(i.e., ai�1 [ ai and aiþk [ ai). Since C0 is 3-nice, we have that k ¼ 1, 2, or 3.

For the cases where k ¼ 1 and k ¼ 3, when we fold the creases ci; . . .; ciþk we get

a new crease pattern C1 with the angles ai�1; . . .; aiþk replaced by a single angle

a0i ¼ ai�1 � ai þ aiþk. By induction, we know a SAW graph C�
1 exists for C1, and by

the properties of SAW graphs, we know that we can embed C�
1 onto the crease

pattern of C1 so that at least one vertex v of C�
1 is in the sector angle a0i. To make the

SAW graph C�
0 we split the vertex v into two vertices v1 and v2 so that every edge

adjacent to v is also adjacent to v1 and v2. Then, if k ¼ 1 we insert the baby SAW

graph G�
1, identifying w0 ¼ v1 and w2 ¼ v2. If k ¼ 3 then we insert G�

3, identifying

w0 ¼ v1 and w4 ¼ v2.
That is, define two sets of vertices based on the neighbors N(v) of v:

N1ðvÞ ¼ NðvÞn(all neighbors of v on faces clockwise from v) and

N2ðvÞ ¼ NðvÞn(all neighbors of v on faces counterclockwise from v. Then VðC�
0Þ ¼

ðVðC�
1ÞnfvgÞ [ VðG�

kÞ and EðC�
0Þ ¼ ðEðC�

1ÞnadjðvÞÞ [ EðG�
kÞ [ KðN1ðvÞ; v1Þ [

KðN2ðvÞ; v2Þ where adj(v) is the set of edges adjacent to v and K(S, x) is the set

of edges with one endpoint in S and the other endpoint x.
Then given any proper 3-coloring s 2 SðC�

0Þ, we have sðw0Þ ¼ sðwkþ1Þ. Letting
sðvÞ ¼ sðw0Þ induces a coloring s1 2 SðC�

1Þ, and since C�
1 is a SAW graph, we have

a bijection f1 : SðC�
1Þ ! MðC1Þ. The coloring s also induces a proper 3-coloring

s2 2 SðG�
kÞ, where we assume the vertex w0 is pre-colored, and we have a bijection

f2 : SðG�
kÞ ! MðGkÞ. Since Gk shares no creases with C1 and valid MV assignments

of Gk operate independently of those of C1 (as implied by the Big-Little-Big

Theorem), we have that f1 and f2 form a bijection between SðC�
0Þ and MðC0Þ, where

jSðC�
0Þj ¼ jSðC�

1Þj � jSðG�
kÞj and jMðC0Þj ¼ jMðC1Þj � jMðGkÞj.

When k ¼ 2 we have creases ci; ciþ1, and ciþ2 with ai ¼ aiþ1 between them and

ai�1 [ ai and aiþ2 [ ai. Folding them gives a single vertex crease pattern C1 with

creases ciþ1; ciþ2 and angles ai; aiþ1 removed, i.e., C1 will have the sequence of

creases ci�1; ci, and ciþ3 with angles ai�1 and aiþ2 between them. Then the SAW

graph C�
1 exists, and by SAW graph properties there will exist an edge fv1; v2g 2

EðC�
1Þ crossing the crease ci, and let us assume that for the bijection f1 : SðC�

1Þ !
MðC1Þ we have the directed edge ðv1; v2Þ. We relabel the vertices v1; v2 with w0;w3,

respectively, and define the graph C�
0 by VðC�

0Þ ¼ VðC�
1Þ [ fw1;w2g and

EðC�
0Þ ¼ EðC�

1Þ [ fw0;w1g [ fw1;w2g [ fw2;w3g, which is simply adding the

baby SAW graph G�
2 onto the edge fw0;w3g of C�

1.

Now let s 2 SðC�
0Þ. Since C�

1 and G�
2 are subgraphs of C�

0, we may consider

s 2 SðC�
1Þ and s 2 SðG�

2Þ as well (where we think of w0 in G
�
2 to be pre-colored). Let

f2 : SðG�
2Þ ! MðG2Þ be the bijection for the SAW graph G�

2 and the creases

ci; ciþ1; ciþ2 that form the copy of G2 in C0, and let l1 ¼ f1ðsÞ and l2 ¼ f2ðsÞ. Then
l1ðciÞ ¼ sðw3Þ� sðw0Þ ¼ sðw3Þ� sðw2Þþ sðw2Þ� sðw1Þþ sðw1Þ� sðw0Þ ¼ l2ðciþ2Þ
þl2ðciþ1Þþ l2ðciÞ (see the directed edges of G�

2 in Fig. 3 for reference). This
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means that in C1, l1ðciÞ equals the majority MV assignment under l2 among the

creases ci;ciþ1;ciþ2 in C0. Therefore the MV assignment l for C0 defined by

lðcÞ ¼
l1ðcÞ if c 2 EðC1Þnfcig
l2ðcÞ if c 2 fci; ciþ1; ciþ2g

�

is valid (since l1 is valid on C1, l2 is valid on fci; ciþ1; ciþ2g, and l1ðciÞ ¼
l2ðciþ2Þ þ l2ðciþ1Þ þ l2ðciÞ means that Maekawa’s Theorem will hold for l). Since
l1 and l2 are bijections, we conclude that this mapping from 3-colorings s 2 SðC0Þ
to MV assignments l 2 MðC0Þ is also a bijection. h

Theorem 4 covers only a portion of all single-vertex crease patterns, those that

are 3-nice. In order to prove this for all flat-foldable vertices, baby SAW graphs G�
k

are needed for an arbitrary number of consecutive equal angles as well as SAW

graphs for the all-equal-angles cases of degree six and higher. Evidence that the

latter may be challenging is found in the difficulty of enumerating the symmetry

classes of valid MV assignments of the all-equal-angles single vertex case, as done

experimentally in [11]. Nonetheless, we now have SAW graphs for a wide variety of

flat-foldable vertices, including all degree-4 vertices (since we already have a SAW

graph for the all-equal-angles degree-4 case).

4 Tiling SAW Graphs

Now that we have seen SAW graphs for a variety of single-vertex crease patterns,

we turn to the problem of putting them together to construct SAW graphs of

multiple-vertex crease patterns. In a general, locally flat-foldable crease pattern

(C, P), an MV assignment will be locally valid if each vertex is valid. However, we

have that every crease c that does not terminate on the boundary of P is shared by

two vertices which forces c to fold in a way that results in both vertices being valid.

Since the directed edges of a single-vertex SAW graph are boundary edges (in the

sense described in Sect. 2), we may try to maintain MV consistency between

adjacent vertices in the crease pattern by tiling single-vertex SAW graphs, i.e.,

identify two boundary edges of two single-vertex SAW graphs that cross the same

crease line c and are oriented in the same direction. This is not always possible to do

when tiling many different SAW graphs, but in some cases this simple strategy

works very well.

For example, a modified Miura-ori crease pattern is shown in Fig. 5, which is the

same as a Miura-ori crease pattern (Fig. 1a) with some of the vertical columns of

zig-zag creases reflected from left-to-right. Notice that even with some of the

columns of crease pattern vertices (and thus their bird’s feet SAW graphs) reflected

from left-to-right, the directed edges between neighboring SAW graphs will match.

This implies that, ignoring the edge orientations, the SAW graph for an m� n
modified Miura-ori is the same m� n grid graph as for a m� nMiura-ori. We arrive

at the following rather surprising result:

Theorem 6 The number of locally valid MV assignments for any m� n modified
Miura-ori is equal to those of an m� n standard Miura-ori.
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Similarly, a snake tessellation crease pattern appears similar to the modified

Miura-ori but with degree-6 vertices (called waterbomb vertices) as well; see

Fig. 6b. However, if we imagine splitting each of the degree-6 vertices into two

bird’s feet, as shown in Fig. 6a, we see that the number of valid MV assignments for

a waterbomb vertex is the same as for two bird’s feet that share a heel. That is, by

the Big-Little-Big Theorem, in order for a waterbomb vertex to fold flat, the creases

fw1;w2;w3g in Fig. 6a cannot all have the same MV parity–say, exactly one is a

valley–and then exactly one of fw4;w5;w6g must be a valley as well (to satisfy

Maekawa’s Theorem). If we insert a bird’s heel c in between these creases, we have

that these two bird’s feet will fold flat under these same exact conditions for the

creases fw1;w2;w3g and fw4;w5;w6g. Therefore, the number of locally valid MV

assignments for the snake tessellation is the same as for the corresponding modified

Miura-ori, such as that shown in Fig. 6b. We have thus proved the following:

Fig. 5 Modified Miura-ori crease patterns have the same (ignoring edge orientations) SAW graph as the
standard Miura-ori

(a)

(b)

w1

w2

w3 w4

w5

w6 w1

w2

w3 w4

w5

w6

c

w1

w2

w3 w4

w5

w6

c

Snake tessellation Modified Miura-ori
Fig. 6 a Splitting a waterbomb vertex into two bird’s feet. b The snake tessellation turns into a modified
Miura-ori under this transformation
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Theorem 7 The number of locally valid MV assignments for any m� n snake
tessellation is equal to those of an m� n standard Miura-ori or m� n modified
Miura-ori.

These examples show us how sometimes it is easy to tile single-vertex SAW

graphs to make SAW graphs for more general crease patterns. However, the

condition that boundary edges crossing the same crease have to be oriented in the

same direction is not always achievable.

For example, consider the triangle twist crease pattern (C, P) in Fig. 7a, in which

each vertex is a bird’s foot. To find its SAW graph, we first find the SAW graph for

two of the crease pattern vertices. Let the three vertices of C be u1; u2; u3. We divide

the region P into two disjoint regions P1 and P2, where u1 2 P1; u2; u3 2 P2, and

P ¼ P1 [ P2. Now let ðU;P1Þ be the single-vertex crease pattern corresponding to

u1, and ðC0;P2Þ be the crease pattern corresponding to the two vertices u2 and u3,
where C0 ¼ Cnfug. We can find a SAW graph for crease pattern ðC0;P2Þ by simply

connecting the SAW graphs for the two vertices along one boundary edge; see

Fig. 7b. However, in order to add in the third vertex to get the SAW graph for

(C, P), we have to match the SAW graphs C0� and U� along two boundary edges.

This is because crease patterns ðC0;P2Þ and ðU;P1Þ share two creases, so the two

boundary edges along those two creases must also have the same orientation.

Notice that we cannot just merge the vertices because the two edges ðv2; v1Þ 2
EðC0�Þ and ðw1;w2Þ 2 EðU�Þ cross the same crease but do not have the same

orientation. In order to switch its orientation, we have to modify our SAW graph U�.
To do this, we add a triangle on the edge ðw1;w2Þ. That is, we add a new vertex w4,

and add edges fw4;w1g; fw4;w2g. Since this forms a 3-cycle, the color for w4 is

forced. Now we can choose one of the two new edges to be directed in the direction

opposite to ðw1;w2Þ, so as to match with ðv2; v1Þ. However, this adds an extra

(C , P2)

u1
u2

u3

(C, P )

(a)
(C , P2)

u1

u2

u3

(C , P2)

(U, P1)

v1

v2
w2

w1

(b)

u1

v1

(U, P1)

w2

w1u2

u3

v2

v3

w3

(c)

w4

v1

w1

v2

u2

u3

v3

w3

x y

(d)

u1

(U, P1)

w2

w4
z

Fig. 7 a A triangle twist. b The twist split into two crease patterns, each with a SAW graph that cannot be
merged together. c A triangle added to one SAW graph to allow merging. d A triangle and a triangular
prism added to one SAW graph to allow merging
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undirected edge to the boundary of U�. If we choose to have the directed edge

ðw4;w1Þ, then we can merge the two SAW graphs by setting

v2 ¼ w4; v1 ¼ w1; v3 ¼ w3; see Fig. 7c.

If we choose to have the directed edge ðw2;w4Þ, the undirected edge will be

between the two directed edges of U� that we want to merge with C0�. To deal with

this scenario, we add a triangular prism graph (with new vertices x, y, and z) to U�

along fw1;w3g, as seen in Fig. 7d. This swaps the positioning of a directed and

undirected edge along the boundary of U�, allowing us to merge the SAW graphs by

identifying v2 ¼ w2, v1 ¼ w4, and v3 ¼ z. Note that when we add these new graphs,

the directed edges ðw1;w2Þ and ðw3;w1Þ are no longer boundary edges! However,

the merged SAW graphs will create a SAW graph for the original crease pattern, as

we will now prove in the following Lemmas.

Lemma 2 Let C be a crease pattern with a SAW graph C�. Let edge e ¼ ðu; vÞ 2
EðC�Þ be a boundary edge crossing crease c. Create a new graph C�� by VðC��Þ ¼
VðC�Þ [ fwg and EðC��Þ ¼ EðC�Þ [ fðw; uÞ; fv;wgg. (see Fig. 8b). Then C�� is
also a SAW graph for crease pattern C.

Proof We are given that C� is a SAW graph of C, so there exists a bijection

f : MðCÞ ! SðC�Þ. Note that since fu; v;wg is a triangle in C��, any 3-coloring

s 2 SðC�Þ will, if applied to C��, force the color of w, which we will denote by

s(w) and consider s to be a 3-coloring of C�� as well. Now, the triangle fu; v;wg
gives us

sðuÞ þ sðvÞ þ sðwÞ � 0 ðmod 3Þ: ð1Þ

We next examine how the directed edges (u, v) and (w, u) determine the value of

lðcÞ:

lðcÞ � sðuÞ � sðwÞ ðmod 3Þ
� sðuÞ þ sðuÞ þ sðvÞ ðmod 3Þ ð substituting ð1ÞÞ
� sðvÞ þ 2sðuÞ ðmod 3Þ
� sðvÞ � sðuÞ ðmod 3Þ:

Therefore the directed edges (u, v) and (w, u) are consistent in how they determine

the MV assignment of crease c. Thus C�� does not change the number of 3-colorings

u v
w

(C, P )

c

(C, P )

u

v
w

c

(C, P )

x
y
z

(a) (b) (c)

C∗ C∗∗ C∗∗

Fig. 8 a A part of a crease pattern (C, P) and the boundary edges of its SAW graph C�. b Adding a
triangle to C�. c Adding a triangular prism to C�
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of C� nor changes how these colorings biject with valid MV assignments of C. This
implies that C�� is also a SAW graph of C. h

Notice that creating C�� according to Lemma 2 gives us a SAW graph that is

functionally identical to C� but whose outer face has been modified. By adding the

triangle, a directed edge has been flipped and an undirected edge has been added

next to it on the outer face. Being able to reverse directed edges will help us tile

SAW graphs, but we need a way to manage any undirected edges on the boundary

that are introduced by such an operation. The next Lemma provides such a way.

Lemma 3 Let C be a crease pattern with a SAW graph C�. Let edge e1 ¼ ðu; vÞ 2
EðC�Þ be a boundary edge crossing crease c, and edge e2 ¼ fv;wg 2 EðC�Þ be an
undirected boundary edge adjacent to e1. Then we may attach a triangular prism
graph to edges e1 and e2 (as shown in Fig. 8c) to create a graph C�� that is also a
SAW graph for crease pattern C.

Proof Since C� is a SAW graph of crease pattern C, there exists a bijection

f : MðCÞ ! SðC�Þ. Let s 2 SðC�Þ be an arbitrary proper 3-coloring of the original

SAW graph. To prove that C�� is a SAW graph on C, we must show that any

coloring on C� forces a unique coloring on C��, and that this new coloring bijects to

the same locally valid MV assignment f(s) of C.
Referring to the labeling in Fig. 8c, note that both fu; y; zg and fv; x;wg are

triangles. Thus, the colorings on these vertices need to satisfy the following

equations:

sðuÞ þ sðyÞ þ sðzÞ � 0ðmod 3Þ and sðvÞ þ sðxÞ þ sðwÞ � 0 ðmod 3Þ

Subtracting equation these equations yields the following:

ðsðvÞ � sðuÞÞ þ ðsðxÞ � sðyÞÞ þ ðsðwÞ � sðzÞÞ � 0 ðmod 3Þ ð2Þ

Since we have edges fu; vg; fy; xg; and fz;wg in our graph C��, none of the three

terms in parentheses on the left-hand side of Eq. (2) can be zero. In fact, we have

0 � ðsðvÞ � sðuÞÞ þ ðsðxÞ � sðyÞÞ þ ðsðwÞ � sðzÞÞ ðmod 3Þ
� �1� 1� 1

The only way for this to sum to 0 mod 3 is if each term in parentheses is 1 or each is

�1, thus:

sðvÞ � sðuÞ � sðxÞ � sðyÞ � sðwÞ � sðzÞ ðmod 3Þ:

In fact, the values of s(u), s(v), and s(w) have already been determined by the

coloring s on C�, so the value of these three differences are forced. We can now

solve for the values of s(x), s(y), and s(z) in terms of the colorings of vertices

u, v, w:
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sðxÞ � �sðvÞ � sðwÞ
sðyÞ � sðxÞ þ sðuÞ � sðvÞ � �2sðvÞ � sðwÞ þ sðuÞ
sðzÞ � sðwÞ þ sðuÞ � sðvÞ

Thus, a coloring on C� forces a coloring of the new vertices in C��. We also have

that the directed edges (u, v) and (z, w) are consistent in determining the value of

lðcÞ since lðcÞ � sðvÞ � sðuÞ � sðwÞ � sðzÞ. We conclude that C�� is a SAW graph

for crease pattern C. h

Once again, our goal is to modify the orientation of the boundary edges of any

given SAW graph. By adding a triangular prism graph, we swap the places of two

adjacent edges, where one is directed and the other is undirected. This will help us

tile SAW graphs.

In fact, when tiling SAW graphs we only want to merge directed boundary edges,

not undirected edges. For example, we saw in Fig. 7c how we can create a SAW

graph for a triangle twist by inserting a triangle between two of the bird’s foot SAW

graphs. That places an undirected boundary edge on the SAW graph for the triangle

twist. Suppose our crease pattern was two joined triangle twists, and we attempted

to make a SAW graph for this by merging two directed and the one undirected edge

of two triangle twist SAW graphs, as shown in Fig. 9a. This does not work; there are

170 locally valid MV assignments of the crease pattern, but only 110 proper

3-colorings of this graph (with one vertex pre-colored). The reason for this

discrepancy is that the merged undirected edges made two triangles in the SAW

graph that share an edge, and the coloring of these triangles, together with their

directed edges, force the creases fu1; u3g and fu4; u5g to have the same MV parity,

which is not necessary in a locally valid MV assignment for this crease pattern.

The tiling shown in Fig. 9b does work, since the undirected edges, and thus their

triangles, are kept on the boundary of the bigger SAW graph. But suppose we

wanted to add another triangle twist to this crease pattern, as in Fig. 9c? Then we

would need to alter the boundary path fw1;w2;w3;w4g of the SAW graph in

Fig. 9b, shown as dashed edges, to move the undirected edge to an endpoint of this

path. This is done by inserting a triangular prism graph, shown in Fig. 9c. Then a

SAW graph for the triangle twist may be tiled onto this dashed path without

u2

u3

u1 u4

u5
u6

u2

u3

u1 u4

u5
u6

w1

w2

w1

w2 w3
w4

(a) (b)

u2

u3

u1 u4

u5
u6

u7 u8

u9

w1

w2
w3

w4

(c)

Fig. 9 a A tiling of SAW graphs for the triangle twist that does not work. b A tiling that does work.
c Extending this tiling to three triangle twists
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interfering with the undirected edges (while making sure that the directed edges

around the bird’s feet creases are as they should be).

In this way, Lemmas 2 and 3 allow us to merge, or tile, two SAW graphs along

boundary edges no matter what the configuration of directed edges are. We now

show that this merging process preserves the bijection within both of the crease

patterns. This theorem allows us to match together SAW graphs for single-vertex

crease patterns to create SAW graphs for general crease patterns.

Theorem 8 Let C be a crease pattern such that for all vertices v 2 VðCÞ, there
exists a SAW graph V� where V is the single-vertex crease pattern corresponding to
v. Then, there exists a SAW graph for the whole crease pattern C.

Proof We proceed by induction on the number of vertices in a crease pattern.

Let (C, P) be a locally flat-foldable crease pattern on a bounded region P 
 R2

such that for every vertex v in C, there exists a SAW graph V� where V is the single-

vertex crease pattern corresponding to vertex v. Let u be a vertex of C such that at

least one of the creases adjacent to u terminates on the boundary of P. Let c be a

simple curve starting and ending on different boundary points of P and that crosses

only the creases adjacent to u that do not terminate on the boundary of P and crosses

no other elements of C. Then c divides P into two regions, Pu which contains u and

P which does not. Let ðC;PÞ be the crease pattern made from C by ‘‘clipping’’ away

the vertex u, where any crease lines adjacent to u and another vertex in C are now

creases that terminate on the boundary of P; see Fig. 10a.

Our graph C has one less vertex, thus it has a valid SAW graph C� by our

inductive hypothesis. So there exists a bijection f 0 : SðC�Þ ! MðCÞ. For our single
vertex u, let ðU;PuÞ be its crease pattern, which also has a valid SAW graph U�. We

call its bijection fu : SðU�Þ ! MðUÞ.
We now proceed by constructing the graph C� using both SAW graphs C� and

U�. Let c1; c2; . . .; ck be the creases shared by the two crease patterns C and U. Let
B be the union of all faces in our crease pattern C crossed by the simple curve c.
This is the region shared between the two crease patterns C and U. We want to

merge all boundary edges in B for both SAW graphs C� and U�. To preserve the

(b)(a)

(C, P ) (C, P )

(C,P )

u uc1

c2

c3
c4

c5

(C,P )

c1

c2

c3
c4

c5

γ
C∗

U∗

C∗

U∗
(U, Pu)(U, Pu)

Fig. 10 a Splitting a crease pattern (C, P) into ðC;PÞ and ðU;PuÞ. b The triangular prisms and triangles

needed to add to C� to make its boundary match that of U�
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bijections of both crease patterns, we need that the boundary edges in B of both

SAW graphs have no undirected edges and that any two boundary edges crossing

the same crease must have the same orientation. To do this, we use Lemmas 2 and 3

to modify the boundary edges of C� that lie in B by first inserting triangles to reverse

any directed edges crossing a crease (say ci) that do not have the same orientation as

the corresponding directed edge of U� (that also crosses ci). Then any undirected

edges of this boundary of C� are moved to the periphery of B by inserting triangular

prisms. Finally, any undirected edges of U� that lie in B are also moved to the

periphery by inserting triangular prisms.

Then we may let C� be the graph obtained by merging our modified C� and U�

graphs along the region B created by our curve c. As seen in Lemmas 2 and 3, these

modified versions of C� and U� also serve as SAW graphs for C and U, respectively,
and thus use the same functions f 0 and fu to biject from colorings to MV

assignments. We claim that we can create a new function f : SðC�Þ ! MðCÞ by

combining f 0 and fu as follows: For any s 2 SðC�Þ, let s0 be the coloring this creates

for C� and su be the coloring this places on the vertices in U
�. Then we let f(s) be the

MV assignment on C that uses f 0ðs0Þ for all creases c 2 C and fuðsuÞ for all creases in
U. Note that this definition for f is consistent on all creases ci 2 C \ U because we

made sure that the modified SAW graphs for C� and U� have directed edges with

the same orientation crossing ci. Thus f is well-defined and f ðsÞ 2 MðCÞ for any

s 2 SðC�Þ.
That f : SðC�Þ ! MðCÞ is a bijection follows from the fact that f 0 and fu are

bijections: If l 2 MðCÞ, then it induces MV assignments l 2 MðCÞ and lu 2 MðUÞ.
Then there exist s1 2 SðC�Þ with f 0ðs1Þ ¼ l and s2 2 SðU�Þ with fuðs2Þ ¼ lu.
Because the merged boundary edges of C� and U� have the same orientation, the

colorings s1 and s2 can be combined to give a coloring s 2 SðC�Þ with f ðsÞ ¼ l,
proving surjectivity of f. If f ðs1Þ ¼ f ðs2Þ for some colorings s1; s2 2 SðC�Þ, then we

can similarly split the MV assignments f ðs1Þ and f ðs2Þ to induce MV assignments

on C and U and use f 0 and fu to show that the colorings s1 and s2 are the same,

proving injectivity. h

A very popular class of flat-foldable origami crease patterns for engineering

applications are those that contain only degree-4 vertices [5]. Theorem 8 together

with the degree-4 SAW graphs from Fig. 2 give us the following corollary.

Corollary 1 Every finite, flat-foldable crease pattern that is 4-regular has a SAW
graph.

Furthermore, if a locally flat-foldable crease pattern (C, P) has n vertices then we

can generate a SAW graph for it with Oðn2Þ vertices, as an induction argument

shows. First, we find a vertex v of C with at least one of its creases touching the

paper’s boundary. The SAW graph of C � v thus has Oððn� 1Þ2Þ ¼ Oðn2Þ vertices.
When we add v, with degree d, back into C � v, there are at most ðd � 1Þ undirected
SAW graph edges that need to be pushed to the paper’s boundary, and we choose a

direction (say, counterclockwise) to push all these edges. We need one triangular

prism to push the first one (the one furthest away from the paper’s boundary in our
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chosen direction), then a stack of two triangular prisms for the next undirected edge,

then a stack of three triangular prisms, and so on (as seen in Fig. 10b). This adds a

maximum number of vertices proportional to the d-th triangular number

TðdÞ ¼ d þ ðd � 1Þ þ ðd � 2Þ þ � � � þ 2þ 1 ¼ dðd þ 1Þ=2Þ. Therefore, the number

of vertices in the SAW graph of C is those for C � v, which is some quadratic on n,
plus a quadratic on the degree of v. This gives us a total number of vertices that is

still Oðn2Þ, and therefore converting from a flat-foldable crease pattern to a SAW

graph is a polynomial-time reduction.

As final examples, we consider the classic origami crane. In the more simple

flapping bird version, shown in Fig. 11a, the SAW graph is made by merging

numerous SAW graphs for degree-4 vertices, although note that to do this we need

to use alternate orientations of the arrows from those of Fig. 2c, as explained in

Remark 1. Also, the center vertex of the crane’s crease pattern is the waterbomb

vertex, which we deal with as we did in the snake tessellation (Fig. 6a). Entering

this SAW graph into Mathematica or Sage reveals that it has 93,312 ways to

properly 3-color the vertices with one vertex pre-colored, and thus the flapping bird

crease pattern has the same number of locally valid MV assignments. It is not

known how many of these are globally flat-foldable as well.

In Fig. 11b we see half of the crease pattern of the classic Japanese origami

crane. In [10] Jun Mitani computed numerically an estimate of the number of folded

states of this crease pattern by labeling the twenty six faces with numbers 1–26,

stacking them in their folded configuration (see the Figure) in order of their labeling,

and testing to see if they could be glued back together without the paper self-

intersecting. In this way Mitani computed that 500,000 was an over-estimation of

the global flat-foldable configurations, since a configuration may be counted

(a) (b)

Fig. 11 a The flapping bird origami model, with its crease pattern and SAW graph. Letting the black,
grey, and white vertices be 0, 1, and 2 respectively gives the MV assignment shown. b Half of the classic
Japanese crane crease pattern and SAW graph
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multiple times under this algorithm. In contrast, our SAW graph has 279,936 proper

3-colorings (with one vertex pre-colored), giving the number of locally valid MV

assignments of half of the classic Japanese crane and a better upper bound on the

number of global flat-foldings of this crease pattern.

5 Conclusion

We have shown that a wide class of flat-foldable crease patterns have SAW graphs,

and therefore their locally valid MV assignments can be enumerated using graph

coloring algorithms. Note, however, that we do not yet have SAW graphs for flat-

foldable vertices that (a) are strictly m-nice for m[ 3 and (b) have all equal sector

angles and degree greater than 4. While further work is required to expand these

results beyond 3-nice vertices, this provides very strong evidence that the basic

combinatorial structure underlying locally valid MV assignments in flat origami is

3-colorings of graphs. Also, the examples of SAW graphs here might not be optimal

in terms of the number of vertices they require. Determining whether a SAW graph

is optimal (vertex minimum) is likely NP-hard; this is currently an open problem.

Furthermore, the prior work of [7] that proved Miura-ori foldings were equivalent

to 3-coloring grid graphs inspired and gave a valuable tool for studying flat-foldable

origami from a statistical mechanics perspective (see [2]), creating exactly solvable

models that show phase transitions exist in some origami tessellations, like the

Miura-ori. The larger family of 3-colorable graphs that we present in this paper

could help expand such statistical mechanics results for wider assortments of crease

patterns.
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