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Number Theory Preliminaries

Definition 1. Let n be a positive integer. We denote ϕ(n) (denoted as the totient of n) as

ϕ(n) = |{x ∈ N | x ⩽ n, gcd(x, n) = 1}|

Theorem 1 (Chinese Remainder Theorem). If we have k integers n1, . . . , nk greater than 1, de-
noted moduli, such that the ni are pairwise coprime (gcd(ni, nj) = 1 for all i, j) and any integers
a1, . . . , ak, then there exists one and only one x such that 0 ⩽ x < N , where N is the product of
all ni, such that the following holds:

x ≡ ai (mod ni) for all i

In fact, we can efficiently construct this x using the Extended Euclidean Algorithm, but we leave
this as an exercise to the reader. For this problem session, the reader may consider CRT as a black
box that both proves the existence of and constructs an x satisfying the above properties.
Problem 1: Prove that for a, b ∈ Z where gcd(a, b) = 1,

ϕ(ab) = ϕ(a)ϕ(b).

Is this true for general a, b?

RSA Problems

Definition 2. The RSA cryptosystem, a public-key (asymmetric) scheme, operates as follows:

1. Alice generates two random primes p, q, and computes N = pq, ϕ(N) = (p− 1)(q − 1).

2. She then chooses public exponent e, such that gcd(e, ϕ(N)) = 1.

3. Finally, she computes d ≡ e−1 (mod ϕ(N)). The public key is (e,N), and the private key is
(p, q, d) (although only d is required for decryption).

4. Encryption on a plaintext M is performed as C ≡ M e (mod N), and decryption can likewise
be done as M ≡ Cd (mod N).

Theorem 2 (Euler’s Totient Theorem). If a and n are coprime (gcd(a, n) = 1), then

aϕ(n) ≡ 1 (mod n).

Problem 2: Using Euler’s Totient Theorem, prove the correctness of RSA, that is, that for
(almost1) every plaintext M , it is true that M ≡ (M e)d (mod N).
1This proof fails in some cases, but we need more machinery to prove those cases, so this will suffice for now.
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Problem 3: Using the Chinese Remainder Theorem, derive Håstad’s broadcast attack, which
states the following: Suppose the same message M is sent to k different people, using different
public keys, but all with the same public exponent e. Then, if an attacker Eve intercepts C1, . . . , Ck,
they can efficiently2 recover M as long as k ⩾ e.

Definition 3. Another interesting application of RSA is in digital signatures. In the RSA digital
signature scheme, if you want to prove to someone that you’re the original owner of a public key,
they send you a challenge, you “decrypt” it, generating a signature, which you then send back.
Anyone can then verify using the public key that your signature encrypts to the original challenge.
However, because RSA decryption can be somewhat computationally intensive, we have something
called RSA-CRT. In RSA-CRT, we construct the signature modulo p and q instead of modulo
N = pq, and then we can use the Chinese Remainder Theorem to construct the final signature
from these partial signatures:

s1 = md (mod p)

s2 = md (mod q)

}
=⇒ s = md (mod N)

Problem 4: Prove the following fault attack on the RSA-CRT signature scheme. Suppose a fault
happens in calculating s2, and the signer computes a s̃2 such that s̃2 ̸= md (mod q). Then, the
signer uses CRT and obtains a faulty signature s̃. Show that using s̃, m, e, and N , you can recover
the private key.

Definition 4. An encryption scheme is said to be perfectly secret if for every probability distri-
bution over the message space M, every message m ∈ M, and every ciphertext c ∈ C for which
Pr [C = c] > 0, the following holds:

Pr [M = m | C = c] = Pr [M = m]

Definition 5. The One-Time Pad (OTP) encryption scheme operates as follows: for a given bit
sequence m, the plaintext, we require the secret key to be any uniformly random bit sequence k
such that |k| ⩾ |m|. The ciphertext (encryption) is then constructed as ci = mi ⊕ ki, where ⊕ is
the XOR operation. To decrypt, the same operation is performed: mi = ci ⊕ ki.

Problem 5: Show that the One-Time Pad is perfectly secret. That is, a ciphertext by itself
reveals no information about the plaintext.

Problem 6: Show that for any scheme to be perfectly secret, the size of key space must be at least
the size of the message space, that is, |K| ⩾ |M|. Is this sufficient for a scheme to be perfectly
secret?

2Polynomial time; you can assume CRT runs in polynomial time as well. The exact computational model does not
matter that much for this question.


