
CONCENTRATION OF MEASURE 

FROM DIFFERENTIAL PRIVACY



Imagine a database representing a set of records.

Can be represented as a frequency histogram

instead. Neighboring databases differ in one record.
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IMPORTANT PROPERTY: Immunity to post-

processing. Any algorithm that can be expressed as

a randomized mapping run on top of a differentially

private algorithm is differentially private.



Intuitive explanation: My participation in a 

survey should not compromise my privacy 

more than a ‘reasonable’ amount. Many ways 

of formalizing the exact nature of this 

guarantee- utility theoretically, 

cryptographically etc. But not focus of this talk.

Note that DP is also a stability notion- ‘small’ 

change in input should only produce ‘small’ 

change in the output. 



Why should you care?

a) EVIL INSURANCE COMPANIES

b) Interesting Math Problems- for e.g. sample 

complexity of private PAC learning

c) New area- lots unsolved!

d) LOADS Of external applications

i) Truthful Mechanisms

ii) Generalization in Learning algorithms

iii) Shadow tomography

iv) Adversarial Robustness of Learning. 

many many more!



EXPONENTIAL MECHANISM- [MT07]:

A common primitive used in DP. Will use in this 

talk. The idea is for some query on a database-

I assume the existence of a utility function 

between database/output pairs. 

Define sensitivity as:





negative of Entropy Function H

Upper bound on entropy

Accuracy Lemma:



Substituting back, we get the lemma.



Expectation of a function of a discrete random variable is defined as:

Will need Markov’s inequality which states that for any positive random variable P(X>=a) <= E(x) / a

Some Math Stuff



THIS TALK: CONCENTRATION OF 

MEASURE

How does a sum of independent and identically 

distributed random variables behave? 

How would we guess it behaves for finite n?- CLT 

intuition



Bounded in (a,b)- Hoeffding. 0-1 RVs- Chernoff. Examples:



In this talk, going to show how to prove a statement very similar to this using DP techniques [US17]. To be precise:  

Approach: First, define Y to be

I am going to consider many independent copies of Y-

Y1,Y2,…..… Ym. Going to reason about behavior of Y by real through the

proxy max(Y1,…….,Ym). Why is this a good proxy?



This puts us in business! What we need to do now is 

somehow bound E[max{0,Y1,Y2……,Ym}]. We’d  hope that 

this is bounded by something that looks like log m (why?). 



Because, if we wanted Pr(Y> 

For the above string of inequalities to hold, we need 

that log m <= 

This would allow us to set m as exponential in epsilon 

n, which would make the right hand side exponentially 

small, as we want.



Let X be a random n x m matrix with all values between 0 

and 1. Let        represent the (i,j) position entry in the matrix. 

Clearly this can be used to represent our situation,  with 

each row representing a fresh choice of Y -

The proof is dependent on the following Lemma: 



The main idea of the proof is that we can consider

an algorithm to select the row with maximum sum.

But we want the algorithm to be ‘stable’ in a

privacy sense while also preserving accuracy.

This can be modeled using the exponential

mechanism! Choose row j according to the

exponential mechanism with a utility function

u(X,j) =

Very natural utility function if you want to select the row 

with the max sum! Let this algorithm be S.



We know that  S  is          DP

Also, from the lemma:

In this case, substituting for the utility function and |R| = m

This expectation is from randomness internal to 

the algorithm and is true for EVERY matrix. 

Taking expectation on both sides in terms of 

randomness of the matrix:



We’re close! Just one more lemma to prove the bigger lemma:

How are we now done? Because mu can be set to 

max E[summation]!



But before that assume I had 2 independent 

random variables that had the same distribution 

i.e. that they took the same values with the 

same probabilities.

Consider the random variables f(x,y) and f(y,x). 

I claim that they have the same distribution. To 

see this, note that the output of the former is 

f(n,m) when x=n and y=m which happens with 

probability P(x=n)P(y=m). But the latter has 

output f(n,m) when y=n and x=m which 

happens with probability P(y=n)P(x=m). These 

are the same since x and y are identical!



Let X and X' be 2 independent random matrices as 

suggested. Let 







Yayyy! Works for loads of other concentration 

inequalities as well. In fact can get new 

concentration inequalities! [NS18]



Where can you learn more?

a) Take Rachel Cumming’s class- ISYE/CS 

8803- Foundations of Data Privacy! 

Offered in the Fall (not sure if this fall - ask 

her!)

b) Algorithmic Foundations of Data Privacy-

Roth and Dwork


