CONCENTRATION OF MEASURE
FROM DIFFERENTIAL PRIVACY



lmagine a database representing a set of records.
Can be represented as a frequency histogram
instead. Neighboring databases differ in one record.
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Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain N*| is (g, §)-differentially private if for all S C Range(M) and
for all z,y € NI*! such that ||z — y||; < 1:

PrM(zx) € §] < exp(e) Pr[M(y) € 8] + 6,

IMPORTANT PROPERTY: Immunity to post-
processing. Any algorithm that can be expressed as

a randomized mapping run on top of a differentially
private algorithm is differentially private.



Intuitive explanation: My participation in a
survey should not compromise my privacy

more than a ‘reasonable’ amount. Many ways
of formalizing the exact nature of this
guarantee- utility theoretically,
cryptographically etc. But not focus of this talk.

Note that DP is also a stability notion- ‘small
change in input should only produce ‘small’
change in the output.




Why should you care?

a)
b)
oo
C)
d)

EVIL INSURANCE COMPANIES
Interesting Math Problems- for e.g. sample
mplexity of private PAC learning

New area- lots unsolved!

_OADS Of external applications

) Truthful Mechanisms

1) Generalization in Learning algorithms

) Shadow tomography

Iv) Adversarial Robustness of Learning.
many many more!




EXPONENTIAL MECHANISM- [MTO/]:

A common primitive used in DP. Will use in this
talk. The idea is for some query on a database-
| assume the existence of a utility function
between database/output pairs.

u:N*xR—=>R

Define sensitivity as:

Maxyc RMAL 3 4 neighbors‘u(ma T) T u(yﬂ T)‘



Definition 3.4 (The Exponential Mechanism). The exponential mech-
anism MEg(z,u,R) selects and outputs an element r € R with
probability proportional to e:xp(“r':”’(m T)).

exp(“5xy )
PriMg(z,u,R)=r] > er exp(Saer))
PrMEg(y,u,R) = 7] ( exp sgguﬂ) )
)

_ (exp(sz(ﬂ ))_ > er exp(Sa))
exp(52:)) )\ Ter exp(S5an?)
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Accuracy Lemma:

€

Elu(x, )] = maz;u(x, j)

PROOF:
By definition, P(output =r) = ¢

eu({x,r)/2Au
K

ulzyT) = Q%UHK + InP(output = r))

Elu(z,r)] =>_._, P(output = r) (2%(!?’1}{ InP(output = r)))

= 248u (an + >°._, P(output = r)inP (output = I‘))

Upper bound on entropy \
= Ellogy(1/p(X))] | |
< log, E[l /p(X)] (by applying Jensen with the r.v. 1/p(X)) negative of Entropy Function H
= log, ZP - (1/p(ai

= 10g221 = logym.
i=1



InK =

" eu(x,r) ewl(x,r)
In Zi:l e 28u > In maxe 24« —
ew(x,r)

max lne 2au =

o A U B, )

Substituting back, we get the lemma.



Some Math Stuff

Expectation of a function of a discrete random variable is defined
S f(@)p(x)
1=1

Will need Markov’s inequality which states that for any positive ral



THIS TALK: CONCENTRATION OF
MEASURE

How does a sum of independent and identically
distributed random variables behave?

X=2(X1+Xo+ X3+ ... + X

How would we guess it behaves for finite n?- CLT
Intuition



Bounded in (a,b)- Hoeffding. 0-1 RVs- Chernoff. Examples:

1
X=—(X1+4+ 4+ Xn).
n
One of the inequalities in Theorem 1 of Hoeffding (1963) states

P(E _E [E] > t) < 2t

Sp=X1+---+ X,

of the random variables:

2t
P Sn—ESn = =~ €X — ’
( [Sp] > t) < p( Z?A@%P)

212
P(|S, —E|S,|| >t) <2exp| — .
(1 S]] > t) <2 p( 2?1(6?20»@:)2)




In this talk, going to show how to prove a statement very simila

Theorem 1.1 ([Ber24]). If X,---,X,, are independent random variables supported on [0,1] and
u; = E|X;] for every i, then

Ve>0 P < E—Q[Ezﬂ)

ixi—mzsn :

i=1

Approach: First, define Y to be

T

ZXi — 1l
T

| am going to consider many independent copies of Y-
Y1,Y2,........ Ym. (oing to reason about behavior of Y by real through the
oxy max(Y1,....... ,Ym). Why is this a good proxy?



Lemma 1.2. Let Y be a random variable and let Y',Y?,---, Y™ be independent copies of Y. Then

In(2)

P[Y > 2E[max{0,Y?, -, Y"}]| <

Proof. Lety =2E [max{O, YL,..., Y””}] and 6 = P[Y > y]. By Markov’s inequality,?

IP[max{O,Yl,Yz,---,Ym} zy] < %
However, if 6 > In(2)/m, then

P[max{0,Y', Y2, Y™} > p| = 1-P[Vje[m] ¥/ <y]
=1-P[Y<y]"=1-(1-8)"

>1—e9m>1-_¢ 02 =1/

which is a contradiction. Thus 6 <1n(2)/m, as required. []

This puts us In business! What we need to do now Is
somehow bound E[max{0,Y1,Y2...... ,Ym}]. We'd hope that
this is bounded by something that looks like log m (why?).



Because, if we wanted Pr(Y> en)

P(Y > en) < P(Y > O(logm))

= PlY 52

Elmax (Y, Ys,

..... )]) < log2/m

For the above string of inequalities to hold, we need
that log m <= en

This would allow us to set m as exponential in epsilon
n, which would make the right hand side exponentially
small, as we want.



Let X be a random n x m matrix with all values between 0
and 1. Let XJ' represent the (i,)) position entry in the matrix.
Clearly this can be used to represent our situation, with
each row representing a fresh choice of Y - i

The proof is dependent on the following Lemma:

Lemma 2.1 (Main Lemma). If X is a random n x m matrix with entries supported on [0,1] and
independent rows, then

2In(m

<ﬂpme
j€lm]

V1 >0

ZX"

max XJT
]E m]Z



The main idea of the proof is that we can consider
an algorithm to select the row with maximum sum.
But we want the algorithm to be ‘stable’ in a
privacy sense while also preserving accuracy.
This can be modeled using the exponential
mechanism! Choose row | according to the
exponential mechanism with a utility function

U(X’J) - Zz—l Xj

Very natural utility function if you want to select the row
with the max sum! Let this algorithm be S.



We know that S is (¢,0)DP

Also, from the lemma:

In|R|

€

i(u(x, r)] > maz;ju(x,j) — 2

In this case, substituting for the utility function and |[R| = m

B30, X]] 2 maz; 35, X] — 2inm
This expectation is from randomness internal to
the algorithm and is true for EVERY matrix.
Taking expectation on both sides in terms of
randomness of the matrix:



Ex.s(52j1 X7] 2 Exlmaz; Y5, X7 - 2022

We're close! Just one more lemma to prove the bigger lemma:

Claim 2.4. IfE [X?_l Xf] <y for all j € [m], then

- :
S, (X

E ZXi”() <elp.
| 1=1 )

X,S,

How are we now done”? Because mu can be set to
max E[summation]!



But before that assume | had 2 independent
random variables that had the same distribution
.e. that they took the same values with the
same probabillities.

Consider the random variables f(x,y) and f(y,X).
| claim that they have the same distribution. To
see this, note that the output of the former is
f(n,m) when x=n and y=m which happens with
probability P(x=n)P(y=m). But the latter has
output f(n,m) when y=n and x=m which
happens with probability P(y=n)P(x=m). These
are the same since x and y are identicall




Let X and X' be 2 independent random matrices as
suggested. Let

Let (X_;, X!) represent the matrix X with the ith row replaced by the ith
row of X'.

m !

=E[) ) P S*?(X):jle

;_1 i=1

m H

X3 ZZE”E}[‘Q’? X, Xi) —JIX}

_;r—] 1=1

m H

-&|L L enlsm-l

}—1 i=1

<E ) €P[S,(X) =K



Proposition 2.5 (Proposition 1.3). Let X;,---,X,, be independent random variables supported on
[0,1] and p; = E[X;] for eachi. DefineY =¥ " | X;—y;. Fixme Nand let Y',---, Y™ be independent
copies of Y. Then

E [max{ﬂ, Yi,..., Ym]] < 4+4/n-In(m+1).



Proof. Firstly, if m > e"—1, then the result holds trivially as ma:{[ﬂ, Yi,..., 'J:"’”} < n with certainty.
So we may assume m < e" -1, _
Let pu =Y ", ;. For eachi € [n], let X},---,J{;” be independent copies of X;, so that Y/ =

Y Xf — u; for all j € [m]. Let I;”+1 = u; be a constant “dummy random varaible” for each 1.
Now we apply Lemma 2.1 to the random matrix X € [0, 1]{m+1);

;ﬁ?ﬂ]if D’j

By construction, [E [E?zl Xf] =Y pi=pforallje[m+1]. Also} Xf = Y/ + u for all

2In(m+ 1]

<e max [E
je[m+1]

¥n>0

je€[m]and } I, X;’”*l = 0 + p. Substituting in these expressions yields

2In(m+1)
» .

¥y >0 ]]E',[n:i.zuv:[’ls"1 +,u,YE+,u,"';YT”+P:[]+FH"—:E”F+



In(2)
EEEH.-‘IIE"Q: — 2 ’

| | 1 In(2)
P[Y > en] <P|Y > 8y/nIn(m +1)| < P[Y > 2E[max{0,Y',---, ¥"}]] < ——

Thus
In(2)

E.E'Eﬂ.-"'ﬁ":]: —9

P[Y = en] < min{l, } < (2+1n2). g £ 64 < ploeTn/64

Yayyy! Works for loads of other concentration
iInequalities as well. In fact can get new
concentration inequalities! [NS18]



Where can you learn more?

a) Take Rachel Cumming’s class- ISYE/CS
8803- Foundations of Data Privacy!
Offered in the Fall (not sure if this fall - ask
her!)

b) Algorithmic Foundations of Data Privacy-
Roth and Dwork



