CONCENTRATION OF MEASURE FROM DIFFERENTIAL PRIVACY

Imagine a database representing a set of records. Can be represented as a frequency histogram instead. Neighboring databases differ in one record.

Name	Age
Marco	28
Julie	28

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{\mathcal{X} \mid}$ is (ε, δ)-differentially private if for all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $\|x-y\|_{1} \leq 1$:

$$
\operatorname{Pr}[\mathcal{M}(x) \in \mathcal{S}] \leq \exp (\varepsilon) \operatorname{Pr}[\mathcal{M}(y) \in \mathcal{S}]+\delta,
$$

IMPORTANT PROPERTY: Immunity to postprocessing. Any algorithm that can be expressed as a randomized mapping run on top of a differentially private algorithm is differentially private.

Intuitive explanation: My participation in a survey should not compromise my privacy more than a 'reasonable' amount. Many ways of formalizing the exact nature of this guarantee- utility theoretically, cryptographically etc. But not focus of this talk.

Note that DP is also a stability notion- 'small' change in input should only produce 'small' change in the output.

Why should you care?

a) EVIL INSURANCE COMPANIES
b) Interesting Math Problems- for e.g. sample complexity of private PAC learning
c) New area- lots unsolved!
d) LOADS Of external applications
i) Truthful Mechanisms
ii) Generalization in Learning algorithms
iii) Shadow tomography
iv) Adversarial Robustness of Learning. many many more!

EXPONENTIAL MECHANISM- [MT07]:

A common primitive used in DP. Will use in this talk. The idea is for some query on a database-

I assume the existence of a utility function between database/output pairs.

$$
u: N^{\mathbb{X}} \times R \rightarrow \mathbb{R}
$$

Define sensitivity as:

$$
\max _{r \in R} \max _{x, y \text { neighbors }}|u(x, r)-u(y, r)|
$$

Definition 3.4 (The Exponential Mechanism). The exponential mechanism $\mathcal{M}_{E}(x, u, \mathcal{R})$ selects and outputs an element $r \in \mathcal{R}$ with probability proportional to $\exp \left(\frac{\varepsilon u(x, r)}{2 \Delta u}\right)$.

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left[\mathcal{M}_{E}(x, u, \mathcal{R})=r\right]}{\operatorname{Pr}\left[\mathcal{M}_{E}(y, u, \mathcal{R})=r\right]}= \frac{\left(\frac{\exp \left(\frac{\varepsilon u(x, r)}{2 \Delta u\left(x, r^{\prime}\right)}\right.}{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u(x)}{2 \Delta u}\right)}\right)}{\left(\frac{\exp \left(\frac{\varepsilon u(y, r)}{2 \Delta u}\right)}{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(y, r^{\prime}\right)}{2 \Delta u}\right)}\right)} \\
&=\left(\frac{\exp \left(\frac{\varepsilon u(x, r)}{2 \Delta u}\right)}{\exp \left(\frac{\varepsilon u(y, r)}{2 \Delta u}\right)}\right) \cdot\left(\frac{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(y, r^{\prime}\right)}{2 \Delta u}\right)}{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(x, r^{\prime}\right)}{2 \Delta u}\right)}\right) \\
&= \exp \left(\frac{\varepsilon\left(u\left(x, r^{\prime}\right)-u\left(y, r^{\prime}\right)\right)}{2 \Delta u}\right) \\
& \cdot\left(\frac{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(y, r^{\prime}\right)}{2 \Delta u}\right)}{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(x, r^{\prime}\right)}{2 \Delta u}\right)}\right) \\
& \leq \exp \left(\frac{\varepsilon}{2}\right) \cdot \exp \left(\frac{\varepsilon}{2}\right) \cdot\left(\frac{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(x, r^{\prime}\right)}{2 \Delta u}\right)}{\sum_{r^{\prime} \in \mathcal{R}} \exp \left(\frac{\varepsilon u\left(x, r^{\prime}\right)}{2 \Delta u}\right)}\right) \\
&= e^{\frac{\epsilon u\left(y, r^{\prime}\right)-u\left(x, r^{\prime}\right)}{2 \Delta u}} e^{\epsilon \frac{u\left(x, r^{\prime}\right)}{2 \Delta u}} \\
&=
\end{aligned}
$$

Accuracy Lemma:

$$
\mathbb{E}[u(x, r)] \geq \max _{j} u(x, j)-2 \frac{\ln |R|}{\epsilon}
$$

PROOF:

By definition, $\mathrm{P}($ output $=\mathrm{r})=\frac{e^{\epsilon u(x, r) / 2 \Delta u}}{K}$

$$
\begin{gathered}
u(x, r)=2 \frac{\Delta u}{\epsilon}(\ln K+\ln \mathrm{P}(\text { output }=\mathrm{r})) \\
E[u(x, r)]=\sum_{i=1}^{r} \mathrm{P}(\text { output }=\mathrm{r})\left(2 \frac{\Delta u}{\epsilon}(\ln K+\ln \mathrm{P}(\text { output }=\mathrm{r}))\right) \\
=2 \frac{\Delta u}{\epsilon}\left(\ln K+\sum_{i=1}^{r} \mathrm{P}(\text { output }=\mathrm{r}) \ln \mathrm{P}(\text { output }=\mathrm{r})\right)
\end{gathered}
$$

Upper bound on entropy
$H(X)=\mathbf{E}\left[\log _{2}(1 / p(X))\right]$
$\leq \log _{2} \mathbf{E}[1 / p(X)] \quad$ (by applying Jensen with the r.v. $1 / p(X)$)
$=\log _{2} \sum_{i=1}^{n} p\left(a_{i}\right) \cdot\left(1 / p\left(a_{i}\right)\right)$
$=\log _{2} \sum_{i=1}^{n} 1=\log _{2} n$.

$$
\begin{aligned}
& \quad \ln K= \\
& \ln \sum_{i=1}^{r} e^{\frac{\epsilon u(x, r)}{2 \Delta u}} \geq \ln \max e^{\frac{\epsilon u(x, r)}{2 \Delta u}}= \\
& \max \ln e^{\frac{\epsilon u(x, r)}{2 \Delta u}}= \\
& \frac{\epsilon}{2 \Delta u} \max u(x, r)
\end{aligned}
$$

Substituting back, we get the lemma.

Some Math Stuff

Expectation of a function of a discrete random variable is defined

$$
\sum_{i=1}^{n} f(x) p(x)
$$

Will need Markov's inequality which states that for any positive ra

THIS TALK: CONCENTRATION OF MEASURE

How does a sum of independent and identically distributed random variables behave?

$$
X=\frac{1}{n}\left(X_{1}+X_{2}+X_{3}+\ldots . .+X_{n}\right)
$$

How would we guess it behaves for finite n?- CLT intuition

Bounded in (a,b)- Hoeffding. 0-1 RVs- Chernoff. Examples:

$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

One of the inequalities in Theorem 1 of Hoeffding (1963) states

$$
\mathrm{P}(\bar{X}-\mathrm{E}[\bar{X}] \geq t) \leq e^{-2 n t^{2}}
$$

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

of the random variables:

$$
\begin{aligned}
& \mathrm{P}\left(S_{n}-\mathrm{E}\left[S_{n}\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right), \\
& \mathrm{P}\left(\left|S_{n}-\mathrm{E}\left[S_{n}\right]\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) .
\end{aligned}
$$

In this talk, going to show how to prove a statement very simila

Theorem 1.1 ([Ber24]). If X_{1}, \cdots, X_{n} are independent random variables supported on $[0,1]$ and $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ for every i, then

$$
\forall \varepsilon \geq 0 \quad \mathbb{P}\left[\sum_{i=1}^{n} X_{i}-\mu_{i} \geq \varepsilon n\right] \leq e^{-\Omega\left(\varepsilon^{2} n\right)}
$$

Approach: First, define Y to be

$$
\sum_{i=1}^{n} X_{i}-\mu_{i}
$$

I am going to consider many independent copies of Y $\mathrm{Y} 1, \mathrm{Y} 2, \ldots \ldots$. . Ym. Going to reason about behavior of Y by real through the oxy $\max (\mathrm{Y} 1, \ldots \ldots . . \mathrm{Ym})$. Why is this a good proxy?

Lemma 1.2. Let Y be a random variable and let $Y^{1}, Y^{2}, \cdots, Y^{m}$ be independent copies of Y. Then

$$
\mathbb{P}\left[Y \geq 2 \mathbb{E}\left[\max \left\{0, Y^{1}, \cdots, Y^{m}\right\}\right]\right] \leq \frac{\ln (2)}{m} .
$$

Proof. Let $y=2 \mathbb{E}\left[\max \left\{0, Y^{1}, \cdots, Y^{m}\right\}\right]$ and $\delta=\mathbb{P}[Y \geq y]$. By Markov's inequality, ${ }^{2}$

$$
\mathbb{P}\left[\max \left\{0, Y^{1}, Y^{2}, \cdots, Y^{m}\right\} \geq y\right] \leq \frac{1}{2} .
$$

However, if $\delta>\ln (2) / m$, then

$$
\begin{aligned}
\mathbb{P}\left[\max \left\{0, Y^{1}, Y^{2}, \cdots, Y^{m}\right\} \geq y\right] & =1-\mathbb{P}\left[\forall j \in[m] \quad Y^{j}<y\right] \\
& =1-\mathbb{P}[Y<y]^{m}=1-(1-\delta)^{m} \\
& >1-e^{-\delta m}>1-e^{-\ln (2)}=1 / 2,
\end{aligned}
$$

which is a contradiction. Thus $\delta \leq \ln (2) / m$, as required.

This puts us in business! What we need to do now is somehow bound $\mathrm{E}[\max \{0, \mathrm{Y} 1, \mathrm{Y} 2 \ldots . . ., \mathrm{Ym}\}]$. We'd hope that this is bounded by something that looks like log m (why?).

Because, if we wanted $\operatorname{Pr}(Y>\epsilon n)$

$$
\begin{array}{r}
P(Y>\epsilon n) \leq P(Y>O(\log m)) \\
\leq P\left(Y>2 \mathbb{E}\left[\max \left(Y_{1}, Y_{2}, \ldots \ldots\right)\right]\right) \leq \log 2 / m
\end{array}
$$

For the above string of inequalities to hold, we need that $\log \mathrm{m}<=\epsilon n$

This would allow us to set m as exponential in epsilon n , which would make the right hand side exponentially small, as we want.

Let X be a random $\mathrm{n} \times \mathrm{m}$ matrix with all values between 0 and 1. Let X_{i}^{j} represent the (i,j) position entry in the matrix. Clearly this can be used to represent our situation, with each row representing a fresh choice of Y -

The proof is dependent on the following Lemma:

Lemma 2.1 (Main Lemma). If \mathbf{X} is a random $n \times m$ matrix with entries supported on $[0,1]$ and independent rows, then

$$
\forall \eta>0 \quad \mathbb{E}\left[\max _{j \in[m]} \sum_{i=1}^{n} X_{i}^{j}\right] \leq e^{\eta} \max _{j \in[m]} \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{j}\right]+\frac{2 \ln (m)}{\eta} .
$$

The main idea of the proof is that we can consider an algorithm to select the row with maximum sum. But we want the algorithm to be 'stable' in a privacy sense while also preserving accuracy. This can be modeled using the exponential mechanism! Choose row j according to the exponential mechanism with a utility function $u(X, j)=$

$$
\sum_{i=1}^{n} X_{i}^{j}
$$

Very natural utility function if you want to select the row with the max sum! Let this algorithm be S.

We know that S is $(\epsilon, 0) \mathrm{DP}$

Also, from the lemma:

$$
\mathbb{E}[u(x, r)] \geq \max _{j} u(x, j)-2 \frac{\ln |R|}{\epsilon}
$$

In this case, substituting for the utility function and $|\mathrm{R}|=\mathrm{m}$

$$
\mathbb{E}\left[\sum_{j=1}^{n} X_{i}^{j}\right] \geq \max _{j} \sum_{j=1}^{n} X_{i}^{j}-2 \frac{\ln m}{\epsilon}
$$

This expectation is from randomness internal to the algorithm and is true for EVERY matrix. Taking expectation on both sides in terms of randomness of the matrix:

$$
\mathbb{E}_{X, S}\left[\sum_{j=1}^{n} X_{i}^{j}\right] \geq \mathbb{E}_{X}\left[\max _{j} \sum_{j=1}^{n} X_{i}^{j}-2 \frac{\ln m}{\epsilon}\right]
$$

We're close! Just one more lemma to prove the bigger lemma:

$$
\begin{aligned}
& \text { Claim 2.4. If } \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{j}\right] \leq \mu \text { for all } j \in[m] \text {, then } \\
& \qquad \underset{\mathbf{X}, \mathcal{S}_{\eta}}{\mathbb{E}}\left[\sum_{i=1}^{n} X_{i}^{\mathcal{S}_{\eta}(\mathbf{x})}\right] \leq e^{\eta} \mu .
\end{aligned}
$$

How are we now done? Because mu can be set to max E[summation]!

But before that assume I had 2 independent random variables that had the same distribution i.e. that they took the same values with the same probabilities.
Consider the random variables $f(x, y)$ and $f(y, x)$. I claim that they have the same distribution. To see this, note that the output of the former is $f(n, m)$ when $x=n$ and $y=m$ which happens with probability $P(x=n) P(y=m)$. But the latter has output $f(n, m)$ when $y=n$ and $x=m$ which happens with probability $P(y=n) P(x=m)$. These are the same since x and y are identical!

Let X and X ' be 2 independent random matrices as suggested. Let

Let (X_{-i}, X_{i}^{\prime}) represent the matrix X with the ith row replaced by the ith row of X '.

$$
\begin{aligned}
\underset{\mathbf{X}, \mathcal{S}_{\eta}}{\mathbb{E}}\left[\sum_{i=1}^{n} X_{i}^{\mathcal{S}_{\eta}(\mathbf{X})}\right] & =\underset{\mathbf{X}}{\mathbb{E}}\left[\sum_{j=1}^{m} \sum_{i=1}^{n} \underset{\mathcal{S}_{\eta}}{\mathbb{P}}\left[\mathcal{S}_{\eta}(\mathbf{X})=j\right] X_{i}^{j}\right] \\
& \leq \underset{\mathbf{X}, \tilde{\mathbf{X}}}{\mathbb{E}}\left[\sum_{j=1}^{m} \sum_{i=1}^{n} e^{\eta} \underset{\mathcal{S}_{\eta}}{\mathbb{P}}\left[\mathcal{S}_{\eta}\left(\mathbf{X}_{-i}, \tilde{\mathbf{X}}_{i}\right)=j\right] X_{i}^{j}\right] \\
& =\underset{\mathbf{X}, \tilde{\mathbf{X}}}{\mathbb{E}}\left[\sum_{j=1}^{m} \sum_{i=1}^{n} e^{\eta} \underset{\mathcal{S}_{\eta}}{\mathbb{P}}\left[\mathcal{S}_{\eta}(\mathbf{X})=j\right] \tilde{X}_{i}^{j}\right] \\
& \leq \underset{\mathbf{X}, \tilde{\mathbf{X}}}{\mathbb{E}}\left[\sum_{j=1}^{m} e^{\eta} \underset{\mathcal{S}_{\eta}}{\mathbb{P}}\left[\mathcal{S}_{\eta}(\mathbf{X})=j\right] \mu\right] \\
& =e^{\eta} \mu .
\end{aligned}
$$

Proposition 2.5 (Proposition 1.3). Let X_{1}, \cdots, X_{n} be independent random variables supported on $[0,1]$ and $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ for each i. Define $Y=\sum_{i=1}^{n} X_{i}-\mu_{i}$. Fix $m \in \mathbb{N}$ and let Y^{1}, \cdots, Y^{m} be independent copies of Y. Then

$$
\mathbb{E}\left[\max \left\{0, Y^{1}, \cdots, Y^{m}\right\}\right] \leq 4 \sqrt{n \cdot \ln (m+1)}
$$

Proof. Firstly, if $m \geq e^{n}-1$, then the result holds trivially as $\max \left\{0, Y^{1}, \ldots, Y^{m}\right\} \leq n$ with certainty. So we may assume $m<e^{n}-1$.

Let $\mu=\sum_{i=1}^{n} \mu_{i}$. For each $i \in[n]$, let $X_{i}^{1}, \cdots, X_{i}^{m}$ be independent copies of X_{i}, so that $Y^{j}=$ $\sum_{i=1}^{n} X_{i}^{j}-\mu_{i}$ for all $j \in[m]$. Let $X_{i}^{m+1}=\mu_{i}$ be a constant "dummy random varaible" for each i.

Now we apply Lemma 2.1 to the random matrix $\mathbf{X} \in[0,1]^{n \times(m+1)}$:

$$
\forall \eta>0 \quad \mathbb{E}\left[\max _{j \in[m+1]} \sum_{i=1}^{n} X_{i}^{j}\right] \leq e^{\eta} \max _{j \in[m+1]} \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{j}\right]+\frac{2 \ln (m+1)}{\eta} .
$$

By construction, $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{j}\right]=\sum_{i=1}^{n} \mu_{i}=\mu$ for all $j \in[m+1]$. Also $\sum_{i=1}^{n} X_{i}^{j}=Y^{j}+\mu$ for all $j \in[m]$ and $\sum_{i=1}^{n} X_{i}^{m+1}=0+\mu$. Substituting in these expressions yields

$$
\forall \eta>0 \quad \mathbb{E}\left[\max \left\{Y^{1}+\mu, Y^{2}+\mu, \cdots, Y^{m}+\mu, 0+\mu\right\}\right] \leq e^{\eta} \mu+\frac{2 \ln (m+1)}{\eta} .
$$

$$
\mathbb{P}[Y \geq \varepsilon n] \leq \mathbb{P}[Y \geq 8 \sqrt{n \ln (m+1)}] \leq \mathbb{P}\left[Y \geq 2 \mathbb{E}\left[\max \left\{0, Y^{1}, \cdots, Y^{m}\right\}\right]\right] \leq \frac{\ln (2)}{m} \leq \frac{\ln (2)}{e^{\varepsilon^{2} n / 64}-2} .
$$

Thus

$$
\mathbb{P}[Y \geq \varepsilon n] \leq \min \left\{1, \frac{\ln (2)}{e^{\varepsilon^{2} n / 64}-2}\right\} \leq(2+\ln 2) \cdot e^{-\varepsilon^{2} n / 64} \leq e^{1-\varepsilon^{2} n / 64}
$$

Yayyy! Works for loads of other concentration inequalities as well. In fact can get new concentration inequalities! [NS18]

Where can you learn more?
a) Take Rachel Cumming's class- ISYE/CS 8803- Foundations of Data Privacy! Offered in the Fall (not sure if this fall - ask her!)
b) Algorithmic Foundations of Data PrivacyRoth and Dwork

