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Sorting

Given a list (ℓi)ni=1 and an ordering ≺, find permutation π s.t.

ℓπi ≺ ℓπi+1 , ∀i ∈ N, 1 ≤ i ≤ n− 1.

Comparison-based: only access ℓ through queries against oracle

≺ (ℓi, ℓj), ∀i, j ∈ N, 1 ≤ i, j ≤ n.

Assume algorithm functionally pure, i.e. deterministic.
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A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2k possible responses.

But there are n! possible permutations.

So 2k ≥ n!, or k ≥ Θ(n log n).
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A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2k, but possible queries
(
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= [n(n− 1)]k ≤ n2k,

resulting in the disappointing trivial bound k ≥ Θ(n).



A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2k, but possible queries
(
n
2

)k for

2k
(
n

2

)k

= [n(n− 1)]k ≤ n2k,

resulting in the disappointing trivial bound k ≥ Θ(n).



An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] ≤ H[Unif({xi}ni=1)] = Θ(n log n).

But only receive at most 1 bit of information from the oracle.

So we need Θ(n log n) queries.
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More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).
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A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.
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A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do Ω(n log n) queries on this list.
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