
Comparision-based sorting

Stephen Huan

https://cgdct.moe

Theory club 2024-01-19

https://cgdct.moe


Overview

Introduction

Counting

Information theory

Game theory



Sorting

Given a list (ℓi)ni=1 and an ordering ≺, find permutation π s.t.

ℓπi ≺ ℓπi+1 , ∀i ∈ N, 1 ≤ i ≤ n− 1.

Comparison-based: only access ℓ through queries against oracle

≺ (ℓi, ℓj), ∀i, j ∈ N, 1 ≤ i, j ≤ n.

Assume algorithm functionally pure, i.e. deterministic.



Sorting

Given a list (ℓi)ni=1 and an ordering ≺, find permutation π s.t.

ℓπi ≺ ℓπi+1 , ∀i ∈ N, 1 ≤ i ≤ n− 1.

Comparison-based: only access ℓ through queries against oracle

≺ (ℓi, ℓj), ∀i, j ∈ N, 1 ≤ i, j ≤ n.

Assume algorithm functionally pure, i.e. deterministic.



Sorting

Given a list (ℓi)ni=1 and an ordering ≺, find permutation π s.t.

ℓπi ≺ ℓπi+1 , ∀i ∈ N, 1 ≤ i ≤ n− 1.

Comparison-based: only access ℓ through queries against oracle

≺ (ℓi, ℓj), ∀i, j ∈ N, 1 ≤ i, j ≤ n.

Assume algorithm functionally pure, i.e. deterministic.



A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2k possible responses.

But there are n! possible permutations.

So 2k ≥ n!, or k ≥ Θ(n log n).



A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2k possible responses.

But there are n! possible permutations.

So 2k ≥ n!, or k ≥ Θ(n log n).



A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2k possible responses.

But there are n! possible permutations.

So 2k ≥ n!, or k ≥ Θ(n log n).



A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2k possible responses.

But there are n! possible permutations.

So 2k ≥ n!, or k ≥ Θ(n log n).



A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2k, but possible queries
(
n
2

)k for

2k
(
n

2

)k

= [n(n− 1)]k ≤ n2k,

resulting in the disappointing trivial bound k ≥ Θ(n).



A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2k, but possible queries
(
n
2

)k for

2k
(
n

2

)k

= [n(n− 1)]k ≤ n2k,

resulting in the disappointing trivial bound k ≥ Θ(n).



An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] ≤ H[Unif({xi}ni=1)] = Θ(n log n).

But only receive at most 1 bit of information from the oracle.

So we need Θ(n log n) queries.



An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] ≤ H[Unif({xi}ni=1)] = Θ(n log n).

But only receive at most 1 bit of information from the oracle.

So we need Θ(n log n) queries.



An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] ≤ H[Unif({xi}ni=1)] = Θ(n log n).

But only receive at most 1 bit of information from the oracle.

So we need Θ(n log n) queries.



An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] ≤ H[Unif({xi}ni=1)] = Θ(n log n).

But only receive at most 1 bit of information from the oracle.

So we need Θ(n log n) queries.



More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).



More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).



More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).



More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).



More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response y,

H[X | y] := H[X]− I[X, y].

We have I[X, y] ≤ min(H[X],H[y])) ≤ 1.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(n log n).



A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.



A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.



A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.



A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.



A different perspective

We can view finding a lower bound on the worst-case as

min
alg A

max
(ℓi)ni=1

(# steps A takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, adaptively choose ℓ dynamically.



A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do Ω(n log n) queries on this list.



A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do Ω(n log n) queries on this list.



A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do Ω(n log n) queries on this list.



A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do Ω(n log n) queries on this list.


	Introduction
	Counting
	Information theory
	Game theory

