Comparision-based sorting

Stephen Huan

<https://cgdct.moe>

Theory club 2024-01-19

Overview

[Introduction](#page-2-0)

[Counting](#page-5-0)

[Information theory](#page-11-0)

[Game theory](#page-20-0)

Sorting

Given a list $(\ell_i)_{i=1}^n$ and an ordering \prec , find permutation π s.t.

 $\ell_{\pi_i} \prec \ell_{\pi_{i+1}}, \quad \forall i \in \mathbb{N}, 1 \leq i \leq n-1.$

Sorting

Given a list $(\ell_i)_{i=1}^n$ and an ordering \prec , find permutation π s.t.

$$
\ell_{\pi_i} \prec \ell_{\pi_{i+1}}, \quad \forall i \in \mathbb{N}, \ 1 \leq i \leq n-1.
$$

Comparison-based: only access ℓ through queries against oracle

$$
\prec (\ell_i,\ell_j), \quad \forall i,j \in \mathbb{N}, \, 1 \leq i,j \leq n.
$$

Sorting

Given a list $(\ell_i)_{i=1}^n$ and an ordering \prec , find permutation π s.t.

$$
\ell_{\pi_i} \prec \ell_{\pi_{i+1}}, \quad \forall i \in \mathbb{N}, \, 1 \leq i \leq n-1.
$$

Comparison-based: only access ℓ through queries against oracle

$$
\prec (\ell_i, \ell_j), \quad \forall i,j \in \mathbb{N}, \, 1 \leq i,j \leq n.
$$

Assume algorithm functionally pure, i.e. deterministic.

Suppose algorithm makes k queries.

Suppose algorithm makes k queries.

Oracle only has 2^k possible responses.

Suppose algorithm makes k queries.

Oracle only has 2^k possible responses.

But there are $n!$ possible permutations.

Suppose algorithm makes k queries.

Oracle only has 2^k possible responses.

But there are $n!$ possible permutations.

So $2^k \geq n!$, or $k \geq \Theta(n \log n)$.

A fatal flaw

Interpretation depends on which indices were queried!

A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2^k , but possible queries $\binom{n}{2}$ $\binom{n}{2}^k$ for

$$
2^{k} \binom{n}{2}^{k} = [n(n-1)]^{k} \le n^{2k},
$$

resulting in the disappointing trivial bound $k \geq \Theta(n)$.

Distribution X over permutations

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

$$
\mathbb{H}[X] \le \mathbb{H}[\text{Unif}(\{x_i\}_{i=1}^n)] = \Theta(n \log n).
$$

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

$$
\mathbb{H}[X] \le \mathbb{H}[\text{Unif}(\{x_i\}_{i=1}^n)] = \Theta(n \log n).
$$

But only receive at most 1 bit of information from the oracle.

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

$$
\mathbb{H}[X] \le \mathbb{H}[\text{Unif}(\{x_i\}_{i=1}^n)] = \Theta(n \log n).
$$

But only receive at most 1 bit of information from the oracle.

So we need $\Theta(n \log n)$ queries.

But how do we compute the entropy given new information?

But how do we compute the entropy given new information?

Conditional entropy $\mathbb{H}[X \mid y]$ for oracle response y,

 $\mathbb{H}[X \mid y] \coloneqq \mathbb{H}[X] - \mathbb{I}[X, y].$

But how do we compute the entropy given new information?

Conditional entropy $\mathbb{H}[X \mid y]$ for oracle response y,

 $\mathbb{H}[X \mid y] \coloneqq \mathbb{H}[X] - \mathbb{I}[X, y].$

We have $\mathbb{I}[X, y] \leq \min(\mathbb{H}[X], \mathbb{H}[y])) \leq 1$.

But how do we compute the entropy given new information?

Conditional entropy $\mathbb{H}[X \mid y]$ for oracle response y,

 $\mathbb{H}[X \mid y] \coloneqq \mathbb{H}[X] - \mathbb{I}[X, y].$

We have $\mathbb{I}[X, y] \leq \min(\mathbb{H}[X], \mathbb{H}[y])) \leq 1$.

But this is only in expectation.

But how do we compute the entropy given new information?

Conditional entropy $\mathbb{H}[X \mid y]$ for oracle response y,

 $\mathbb{H}[X \mid y] \coloneqq \mathbb{H}[X] - \mathbb{I}[X, y].$

We have $\mathbb{I}[X, y] \le \min(\mathbb{H}[X], \mathbb{H}[y]) \le 1$.

But this is only in expectation.

Even so, this is sufficient to show no algorithm is $o(n \log n)$.

We can view finding a lower bound on the worst-case as

min max
alg \mathcal{A} $(\ell_i)_{i=1}^n$ (# steps $\mathcal A$ takes on ℓ).

We can view finding a *lower bound* on the *worst-case* as

min max
alg \mathcal{A} $(\ell_i)_{i=1}^n$ (# steps $\mathcal A$ takes on ℓ).

Each player controls a variable.

We can view finding a *lower bound* on the worst-case as

min max
alg \mathcal{A} $(\ell_i)_{i=1}^n$ (# steps $\mathcal A$ takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

We can view finding a *lower bound* on the *worst-case* as

min max
alg \mathcal{A} $(\ell_i)_{i=1}^n$ (# steps $\mathcal A$ takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

We can view finding a *lower bound* on the *worst-case* as

min max
alg \mathcal{A} $(\ell_i)_{i=1}^n$ (# steps $\mathcal A$ takes on ℓ).

Each player controls a variable.

This perspective suggests a constructive proof.

Normally, we think of ℓ as fixed in advance.

Instead, *adaptively* choose ℓ dynamically.

Maintain a set of all possible permutations.

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

This means A must do $\Omega(n \log n)$ queries on this list.