Comparision-based sorting

Stephen Huan

https://cgdct.moe

Theory club 2024-01-19

https://cgdct.moe

Overview

Introduction

Counting

Information theory

Game theory

Sorting

Given a list (¢;)7_; and an ordering <, find permutation 7 s.t.

by < by, VieN, 1<i<n—1.

Sorting

Given a list (¢;)7_; and an ordering <, find permutation 7 s.t.
bry = lryyy, VieN, 1<i<n-—-1

Comparison-based: only access ¢ through queries against oracle

< (li,), Vi,j €N, 1<i,j<n.

Sorting

Given a list (¢;)!"_; and an ordering <, find permutation 7 s.t.
bry <= Alryyy, VieN, 1<i<n-—1
Comparison-based: only access ¢ through queries against oracle
< (4, 45), VYi,jeN, 1<4,5<n.

Assume algorithm functionally pure, i.e. deterministic.

A simple counting argument

Suppose algorithm makes k queries.

A simple counting argument

Suppose algorithm makes k queries.

Oracle only has 2% possible responses.

A simple counting argument

Suppose algorithm makes k queries.
Oracle only has 2% possible responses.

But there are n! possible permutations.

A simple counting argument

Suppose algorithm makes k queries.
Oracle only has 2% possible responses.
But there are n! possible permutations.

So 2% > n! or k > O(nlogn).

A fatal flaw

Interpretation depends on which indices were queried!

A fatal flaw

Interpretation depends on which indices were queried!

Possible responses still 2¥, but possible queries (Z)k for

ok (Z)k = [n(n — 1)]¥ < n2*,

resulting in the disappointing trivial bound k£ > ©(n).

An information-theoretic perspective?

Distribution X over permutations

An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities

H[X] < H[Unif({z;}i=,)] = ©(nlogn).

An information-theoretic perspective?

Distribution X over permutations
Uniform is the worst-case distribution over n possibilities
H[X] < H[Unif({z;}i=,)] = ©(nlogn).

But only receive at most 1 bit of information from the oracle.

An information-theoretic perspective?

Distribution X over permutations

Uniform is the worst-case distribution over n possibilities
H[X] < H[Unif({z;}}~,)] = ©(nlogn).

But only receive at most 1 bit of information from the oracle.

So we need ©(nlogn) queries.

More precisely

But how do we compute the entropy given new information?

More precisely

But how do we compute the entropy given new information?

Conditional entropy H[X | y] for oracle response v,

H[X | y] = HIX] - I[X, y].

More precisely

But how do we compute the entropy given new information?
Conditional entropy H[X | y] for oracle response v,
HIX | y] == H[X] - I[X, y].

We have [[X, y] < min(H[X], H[y])) < 1.

More precisely

But how do we compute the entropy given new information?
Conditional entropy H[X | y] for oracle response v,

HIX [y] = H[X] - I[X, y].
We have [[X, y] < min(H[X], H[y])) < 1.

But this is only in expectation.

More precisely

But how do we compute the entropy given new information?
Conditional entropy H[X | y] for oracle response v,
HIX [y] = H[X] - I[X, y].
We have [[X, y] < min(H[X], H[y])) < 1.
But this is only in expectation.

Even so, this is sufficient to show no algorithm is o(nlogn).

A different perspective

We can view finding a lower bound on the worst-case as

min max steps A takes on /).
Iin max (# step)

A different perspective

We can view finding a lower bound on the worst-case as

min max steps A takes on /).
Iin max (# step)

Each player controls a variable.

A different perspective

We can view finding a lower bound on the worst-case as

min max steps A takes on /).
Iin max (# step)

Each player controls a variable.

This perspective suggests a constructive proof.

A different perspective

We can view finding a lower bound on the worst-case as

min max steps A takes on /).
Iin max (# step)

Each player controls a variable.
This perspective suggests a constructive proof.

Normally, we think of £ as fixed in advance.

A different perspective

We can view finding a lower bound on the worst-case as

min max steps A takes on /).
Iin max (# step)

Each player controls a variable.
This perspective suggests a constructive proof.
Normally, we think of £ as fixed in advance.

Instead, adaptively choose £ dynamically.

A constructive proof

Maintain a set of all possible permutations.

A constructive proof

Maintain a set of all possible permutations.

For every query, pick the result that maximizes the size.

A constructive proof

Maintain a set of all possible permutations.
For every query, pick the result that maximizes the size.

The best A can possibly do is split the set evenly.

A constructive proof

Maintain a set of all possible permutations.
For every query, pick the result that maximizes the size.
The best A can possibly do is split the set evenly.

This means A must do 2(nlogn) queries on this list.

	Introduction
	Counting
	Information theory
	Game theory

