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Maximum Likelihood Estimation

Maximum likelihood estimation, or MLE, is a statistical method for estimating the param-
eters of some distribution. For instance, suppose we have several data points x1, x2, . . .,
xn drawn from some distribution. If we know the family of distributions that it belongs to
(e.g. Gaussian, Uniform, Binomial, etc.), then we can use MLE to give us the “most likely”
parameters of the specific distribution the data was drawn from.

For instance, suppose we flip a coin with an unknown bias 20 times, recording whether
each flip resulted in “HEADS” or “TAILS”. Then, we can view each coin flip as one sample
from a Bernoulli distribution (a Bernoulli distribution is parameterized by p, the “chance of
success”, and takes value 1 with probability p and value 0 with probability 1 − p). Using
Maximum Likelihood Estimation, we will find the most likely estimate for p for this coin.

Specifically, we want to find p̂MLE, the best estimate for p given the data.

p̂ = p̂MLE = arg max
p∈[0,1]

P(X1 = x1, X2 = x2, . . . , Xn = xn |X ∼ Bernoulli(p))

This simply says that the most likely p is the one that maximizes the probability that
we would obtain this sample of data, given that each X is sampled from the Bernoulli
distribution with parameter p. If this seems slightly backwards, it’s because it is: in the
next section, we will more rigorously explain where this notion comes from. But for now,
continuing with this, we can next use the fact that the trials are independent:

p̂ = arg max
p∈[0,1]

P(X1 = x1 | p)P(X2 = x2 | p) . . .P(Xn = xn | p)

p̂ = arg max
p∈[0,1]

n∏
i=1

P(Xi = xi | p)

However, maximizing this is often difficult. In practice, it’s usually easier to work with
log likelihood, which simply means taking the logarithm of the expression inside the argmax.
This is valid because log(x) is a monotonically increasing function, meaning the maximum
of log(f(x)) will occur at the same place as the maximum of f(x).
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p̂ = arg max
p∈[0,1]

log
n∏
i=1

P(Xi = xi | p)

p̂ = arg max
p∈[0,1]

n∑
i=1

log P(Xi = xi | p)

Next, using the pdf for a Bernoulli distribution with parameter p, we can actually solve
for p̂. Noting that P(Xi = xi) = p if a “HEADS” was flipped (xi = HEADS), and P(Xi =
xi) = 1− p if a “TAILS” was flipped, we get:

p̂ = arg max
p∈[0,1]

k log p+ (n− k) log(1− p)

where k is the number of “HEADS” that were flipped. Next, to maximize this expression,
we can set the derivative of the objective function with respect to p equal to 0, in order to
find critical points.

d

dp
(k log p+ (n− k) log (1− p)) = 0

k
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Some simple checking can be done to verify that k
n

is indeed a maximum and not a
minimum, which gives us our final answer:

p̂ =
k

n

Logically, this makes sense: if we flip 7 heads and 13 tails, the best guess for the bias of
the coin is that it lands heads 7

7+13
of the time. However, there’s a slight problem here: we

made the implicit assumption that all biases are equally likely. What if we want to model
the fact that fair coins are much more common than biased coins? That’s where maximum
a posteriori (MAP) comes in.
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Maximum a Posteriori

Maximum a Posteriori (MAP) is closely related to MLE, but with the addition of a prior over
the distribution’s parameters. That is, MAP allows us to take advantage of the knowledge
that some parameters might be inherently more likely than others. For example, when we’re
given a coin, and we’re trying to estimate the bias, it’s much more likely that the coin is fair
(or near fair) than it is that it has a significant bias. This is captured in the prior, so-called
because it represents our “prior beliefs” before having looked at any data (in this case, the
coin flips).

More rigorously, the difference between MAP and MLE is in the expression we’re max-
imizing: in MAP we maximize the posterior probability, whereas in MLE we maximize the
likelihood function. The difference is subtle; letting θ represent our distribution’s parameters
and X represent the sampled data, we have

Posterior probability: P(θ |X)

Likelihood function: P(X | θ)

In fact, using Bayes’ Theorem, we can show relatively easily that maximizing the poste-
rior probability (MAP) is equivalent to the maximum likelihood estimate when the prior is
uniform. That is, when all possible θ are equally likely.

θ̂MAP = arg max
θ

P(θ |X)

θ̂MAP = arg max
θ

P(X | θ) P(θ)

P(X)

Since P(X) is constant (no θ dependence), we can simply remove it from the argmax:

θ̂MAP = arg max
θ

P(X | θ) P(θ)

Likewise, if P(θ) is uniform, then it also does not depend on θ:

θ̂MAP = arg max
θ

P(X | θ)

θ̂MAP = θ̂MLE

Thus, we have shown that MLE is simply a special case of MAP, when all parameters
are equally likely. Tying this back into our coin bias example, the implicit assumption was
that any bias of the coin was equally likely: P(p = 0.99) = P(p = 0.5) = P(p = x)∀x ∈ [0, 1].
A more realistic prior might be a Gaussian centered around p = 0.5. We leave calculating
the MAP estimate for this case as an exercise for the reader, as we now focus on a more
interesting application of MAP and MLE.
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Mean Squared Error as MLE

Now, we will show that the use of a mean squared error (MSE) as a loss function in linear
regression corresponds directly to the maximum likelihood estimate under Gaussian noise.
That is, we make the assumption that our observations were generated from a linear model
with normally-distributed noise:

yi = 〈θ, xi〉+ ε, ε ∼ N(0, σ2)

If we have reason to believe a linear model1 could fit our data well, then this is a rel-
atively natural assumption to make, since noise in real-world phenomena is often normally
distributed with zero-mean. Our goal is then to estimate the parameter vector θ, given data
X = {x1, x2, . . . , xn} with observations Y = {y1, y2, . . . , yn}, where θ, xi ∈ Rm, and yi ∈ R.
We can do this with MLE as follows:

θ̂ = arg max
θ

log P(Y |X, θ)

= arg max
θ

n∑
i=1

log P(yi | xi, θ)

= arg max
θ

n∑
i=1

log P(ε = yi − 〈θ, xi〉)

= arg max
θ

n∑
i=1

log
1

σ
√

2π
e
− 1

2

(
yi−〈θ,xi〉

σ

)2

= arg max
θ

(
n log

(
1

σ
√

2π

)
−

n∑
i=1

1

2

(
yi − 〈θ, xi〉

σ

)2
)

= arg max
θ

(
− 1

2σ2

) n∑
i=1

(yi − 〈θ, xi〉)2

= arg min
θ

n∑
i=1

(yi − 〈θ, xi〉)2

And we have arrived at the mean squared error loss! (Technically, we’re missing the 1
n
,

but for fixed n this is constant). Thus, we have shown that maximizing log likelihood under
a Gaussian noise model directly corresponds to minimizing the mean squared error. Note
that the variance of the noise, σ2, does not directly appear in the result, so it doesn’t matter
when finding the maximum likelihood estimate.

1Note that linear models can be trivially extended to include higher order terms by computing and adding
these terms as a new feature – this derivation holds in these cases as well.
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Regularization as a Prior

Similar to how mean squared error can be viewed as a natural loss function arising from
assuming Gaussian noise, it can also be shown that many forms of regularization can be
seen as choosing a prior distribution over parameters, with MAP estimation. For example,
L2 weight regularization comes from choosing a Gaussian prior for the weight vector.

If we let our prior be

P(θ) =

The rest is left as an exercise for the reader.
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