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Part 1: Fast inference in Gaussian processes



The problem
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Posterior predictions

IE[yPr ‘ yTr] = ppr + @Pr,Tr@'Fr%Tr(yTr - NTr)
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Likelihood —21logn(y) = logdet(0) +y 'O 'y + Nlog(27)
Sampling 2z ~ N(0,1d), L= T2 + p ~ N(p, ©)

Direct computation scales as O(N?3), limiting data size (10%)
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Cholesky factorization < iterative conditioning of process

L = chol(©71)
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Conditional (near)-independence < (approximate) sparsity
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Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points



Cholesky factorization recipe

Procedure for computing LLT ~ 07!
1. Pick an ordering on the rows/columns of ©
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors
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Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence
L = argmin Dk, (N(O, O) H N(o, (IALIALT)*l))
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Efficient and embarrassingly parallel closed-form solution
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Achieves state of the art e-accuracy in time complexity
@) (N log?? (g)) with O (N log? (g)) nonzero entries
[Schéfer, Katzfuss, and Owhadi 2021]
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KL-minimization, revisited

Plug optimal L back into the KL divergence

Dkr, (@ H (LLT)_1> = i [10g (O,ijs\(i}) — 10g (0 1i11:) ]
=1

KL is accumulated error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points s; most informative to that point

Variance < mutual information < mean squared error

+ H[yPr; yTr}
+ Var[E[yp, | y7]]

Hlyp:]
Var|yp|
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Part 2: Scientific applications at exascale
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The problem

Non-ergodic ground-motion models [Lavrentiadis et al. 2022]
estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance
Gaussian process modeling provides uncertainty quantification

Seismic hazard at nuclear power plant locations



Kernel function

Use kernel

Cl(tE) + CQ(ts) + X363(tE, ts) + [AR . Cca(tC)] + W + 6B

where

c1 models earthquake interactions

¢o models site (receiver) interactions

X3 is the geometric scaling spreading

c3 models the interaction between earthquakes and sites
AR is a cell path distance array

Cca models cell-specific path attenuation

OW is a noise nugget

0B is noise shared within the same earthquake event



Kernels on paths
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Kernels on paths

For f ~ GP(0,k), define f = fol f®+t(x' —x))dt
Linear transformation of a GP is also a GP

It has covariance

_ 1,1

Moy = [ [ hat i~ o)y + sy - ) drds
o Jo

which creates “paths” in the 2-d input space.
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Geometric dependence

Screening effect motivated by geometric considerations
Maximin ordering worse than random for spatial dimension > 4
Nearest neighbors unclear for paths

Quick fix: correlation distance
dist(p, q) = /1 — |p|

Information-theoretic orderings?
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Part 3: Towards general preconditioners



Sparse versus low rank

Sparsity doesn't scale to high dimension
“All high dimensional data is low rank”

Best-of-both-worlds approximation?



Towards geometry-free Cholesky factors

RPCholesky [Chen et al. 2023] 4+ random ordering
RPCholesky + nearest neighbors + random candidate sets
Conditional selection sparsity pattern [Huan et al. 2023]

Automatic interpolation between low rank/sparse



Summary

Applications to GPs, optimal transport, optimization, etc.
Implications for algorithmic design
Automation essential from a user perspective

User-friendly software libraries (Cython, JAX, Julia)



Part 4: Transport by cumulant matching



Lattice theory

A partially ordered set is a set X equipped with a partial order
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Lattice theory

A partially ordered set is a set X equipped with a partial order

<CX xX.

The relation < satisfies
1. Reflexivity: z < z.
2. Antisymmetry: f x <yandy <z, x =y.
3. Transitivity: If x <yandy <z z <y.

A lattice L has the extra property that for a,b € L, there are
unique greatest lower and least upper bounds a Ab,a Vb € L.



Partition lattice

1234

123]4 13|24  124|3 12|34  134]2  14]23  234|1

1324 2413 1234

\\1\ Wz?» 23/{]4

234

Figure: Partition lattice: a < b if a is a sub-partition of b.
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Lattice calculus

For a lattice function f : £ — R, define the integral

Fa) =) f(b).

b<a

Formal inverse the derivative

f(a) = 3" m(b,a)F(b),

b<a

where m is the Mébius function of the lattice.
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Mobius function of the partition lattice

On the partition lattice, it can be shown that
m(o,1) = (=177 Y (#o — 1)I.

In addition, for o < 7 we have the isomorphism

[0, T] = ® T,

ber

inspiring the formula

[ (05, 15).

ber

Note that m(o,7) =0 if both 0 £ 7 and 7 £ 0.



Statistical interpretation

If f is the cumulant product

f(r) = K(m1) - K1),

then the integral F' is the moment product

F(r) = p(r) - - (7).



Statistical interpretation

If fis the cumulant product
f(r) = k(m) - K1),
then the integral F' is the moment product
F(r) = p(r) -+ p(m).

The generalized cumulants g(7) = k(7) are given by

g(r)= > flo).

o:oVT=1
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