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Overview

Fast inference in Gaussian processes

Scientific applications at exascale

Towards general preconditioners

Transport by cumulant matching



Part 1: Fast inference in Gaussian processes



The problem

Gaussian process (GP) modeling f ∼ GP(µ(·),K(·, ·))

Posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Likelihood −2 log η(y) = logdet(Θ) + y⊤Θ−1y +N log(2π)

Sampling z ∼ N (0, Id), L−⊤z + µ ∼ N (µ,Θ)

Direct computation scales as O(N3), limiting data size (104)
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Statistical Cholesky factorization

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ−1)

−Li,j

Lj,j
=

Cov[yi, yj | yk>j,k ̸=i]

Var[yj | yk>j,k ̸=i]

Conditional (near)-independence ⇔ (approximate) sparsity
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Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points
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Cholesky factorization recipe

Procedure for computing LL⊤ ≈ Θ−1

1. Pick an ordering on the rows/columns of Θ
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi
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Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Achieves state of the art ε-accuracy in time complexity
O
(
N log2d

(
N
ε

))
with O

(
N logd

(
N
ε

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]
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KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ

∥∥∥ (LL⊤)−1
)
=

N∑
i=1

[
log

(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]

KL is accumulated error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]
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Part 2: Scientific applications at exascale



The problem

Non-ergodic ground-motion models [Lavrentiadis et al. 2022]
estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance

Gaussian process modeling provides uncertainty quantification

Seismic hazard at nuclear power plant locations
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Kernel function

Use kernel

c1(tE) + c2(tS) +X3c3(tE , tS) + [∆R · cca(tC)] + δW + δB

where
• c1 models earthquake interactions
• c2 models site (receiver) interactions
• X3 is the geometric scaling spreading
• c3 models the interaction between earthquakes and sites
• ∆R is a cell path distance array
• cca models cell-specific path attenuation
• δW is a noise nugget
• δB is noise shared within the same earthquake event



Kernels on paths

For f ∼ GP(0, k), define f̃ =
∫ 1
0 f(x+ t(x′ − x)) dt

Linear transformation of a GP is also a GP

It has covariance

k̃(x,x′,y,y′) =

∫ 1

0

∫ 1

0
k(x+ t(x′ − x),y + s(y′ − y)) dt ds

which creates “paths” in the 2-d input space.
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Geometric dependence

Screening effect motivated by geometric considerations

Maximin ordering worse than random for spatial dimension ≥ 4

Nearest neighbors unclear for paths

Quick fix: correlation distance

dist(p, q) :=
√
1− |ρ|

Information-theoretic orderings?
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Part 3: Towards general preconditioners



Sparse versus low rank

Sparsity doesn’t scale to high dimension

“All high dimensional data is low rank”

Best-of-both-worlds approximation?



Towards geometry-free Cholesky factors

RPCholesky [Chen et al. 2023] + random ordering

RPCholesky + nearest neighbors + random candidate sets

Conditional selection sparsity pattern [Huan et al. 2023]

Automatic interpolation between low rank/sparse



Summary

Applications to GPs, optimal transport, optimization, etc.

Implications for algorithmic design

Automation essential from a user perspective

User-friendly software libraries (Cython, JAX, Julia)



Part 4: Transport by cumulant matching



Lattice theory

A partially ordered set is a set X equipped with a partial order

≤ ⊆ X ×X.

The relation ≤ satisfies
1. Reflexivity: x ≤ x.
2. Antisymmetry: If x ≤ y and y ≤ x, x = y.
3. Transitivity: If x ≤ y and y ≤ z, x ≤ y.

A lattice L has the extra property that for a, b ∈ L, there are
unique greatest lower and least upper bounds a ∧ b, a ∨ b ∈ L.
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Partition lattice

Figure: Partition lattice: a ≤ b if a is a sub-partition of b.



Lattice calculus

For a lattice function f : L → R, define the integral

F (a) =
∑
b≤a

f(b).

Formal inverse the derivative

f(a) =
∑
b≤a

m(b, a)F (b),

where m is the Möbius function of the lattice.
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Möbius function of the partition lattice

On the partition lattice, it can be shown that

m(σ,1) = (−1)#σ−1(#σ − 1)!.

In addition, for σ ≤ τ we have the isomorphism

[σ, τ ] ∼=
⊗
b∈τ

Υb

inspiring the formula ∏
b∈τ

m(0b,1b).

Note that m(σ, τ) = 0 if both σ ̸≤ τ and τ ̸≤ σ.
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Statistical interpretation

If f is the cumulant product

f(τ) = κ(τ1) · · ·κ(τν),

then the integral F is the moment product

F (τ) = µ(τ1) · · ·µ(τν).

The generalized cumulants g(τ) = κ(τ) are given by

g(τ) =
∑

σ:σ∨τ=1

f(σ).



Statistical interpretation

If f is the cumulant product

f(τ) = κ(τ1) · · ·κ(τν),

then the integral F is the moment product

F (τ) = µ(τ1) · · ·µ(τν).

The generalized cumulants g(τ) = κ(τ) are given by

g(τ) =
∑

σ:σ∨τ=1

f(σ).





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1





References I

Chen, Yifan et al. (Feb. 2023). Randomly Pivoted Cholesky:
Practical Approximation of a Kernel Matrix with Few Entry
Evaluations. DOI: 10.48550/arXiv.2207.06503. arXiv:
2207.06503 [cs, math, stat].
Guinness, Joseph (Oct. 2018). “Permutation and Grouping
Methods for Sharpening Gaussian Process Approximations”. In:
Technometrics 60.4, pp. 415–429. ISSN: 0040-1706, 1537-2723.
DOI: 10.1080/00401706.2018.1437476. arXiv: 1609.05372
[stat].
Huan, Stephen et al. (July 2023). Sparse Cholesky Factorization
by Greedy Conditional Selection. DOI:
10.48550/arXiv.2307.11648. arXiv: 2307.11648 [cs,
math, stat].

https://doi.org/10.48550/arXiv.2207.06503
https://arxiv.org/abs/2207.06503
https://doi.org/10.1080/00401706.2018.1437476
https://arxiv.org/abs/1609.05372
https://arxiv.org/abs/1609.05372
https://doi.org/10.48550/arXiv.2307.11648
https://arxiv.org/abs/2307.11648
https://arxiv.org/abs/2307.11648


References II

Lavrentiadis, Grigorios et al. (Aug. 2022). “Overview and
Introduction to Development of Non-Ergodic Earthquake
Ground-Motion Models”. In: Bulletin of Earthquake Engineering.
ISSN: 1573-1456. DOI: 10.1007/s10518-022-01485-x.
Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi (Oct.
2021). “Sparse Cholesky Factorization by Kullback-Leibler
Minimization”. In: arXiv:2004.14455 [cs, math, stat]. arXiv:
2004.14455 [cs, math, stat].
Stein, Michael L. (Feb. 2002). “The Screening Effect in
Kriging”. In: The Annals of Statistics 30.1, pp. 298–323. ISSN:
0090-5364, 2168-8966. DOI: 10.1214/aos/1015362194.

https://doi.org/10.1007/s10518-022-01485-x
https://arxiv.org/abs/2004.14455
https://doi.org/10.1214/aos/1015362194

	Fast inference in Gaussian processes
	Scientific applications at exascale
	Towards general preconditioners
	Transport by cumulant matching
	References

